请用python写一个强化学习的案例
时间: 2023-07-19 08:46:20 浏览: 107
下面是一个简单的使用 Python 实现强化学习的案例,使用的是 Q-learning 算法来解决迷宫问题:
```python
import numpy as np
# 定义迷宫地图
maze_map = np.array([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
])
# 定义状态空间和动作空间
states = range(maze_map.size)
actions = ['up', 'down', 'left', 'right']
# 定义 Q 表格,初始化为 0
Q_table = np.zeros((len(states), len(actions)))
# 定义参数
alpha = 0.1 # 学习率
gamma = 0.9 # 折扣因子
epsilon = 0.1 # 探索率
# Q-learning 算法
def q_learning(state, maze_map, Q_table, alpha, gamma, epsilon):
if np.random.uniform(0, 1) < epsilon:
# 探索
action = np.random.choice(actions)
else:
# 利用
action = actions[np.argmax(Q_table[state])]
next_state = get_next_state(state, action, maze_map)
reward = get_reward(next_state, maze_map)
Q_table[state][actions.index(action)] += alpha * (reward + gamma * max(Q_table[next_state]) - Q_table[state][actions.index(action)])
return next_state, Q_table
# 获取下一个状态
def get_next_state(state, action, maze_map):
row, col = np.unravel_index(state, maze_map.shape)
if action == 'up':
row -= 1
elif action == 'down':
row += 1
elif action == 'left':
col -= 1
elif action == 'right':
col += 1
row = max(0, row)
row = min(row, maze_map.shape[0] - 1)
col = max(0, col)
col = min(col, maze_map.shape[1] - 1)
next_state = np.ravel_multi_index((row, col), maze_map.shape)
if maze_map[row][col] == 1:
# 碰到障碍物,回到原状态
next_state = state
return next_state
# 获取奖励
def get_reward(state, maze_map):
if maze_map[np.unravel_index(state, maze_map.shape)] == 1:
# 碰到障碍物,惩罚
reward = -1
elif state == maze_map.size - 1:
# 到达目标位置,奖励
reward = 1
else:
# 其他情况,没有奖励
reward = 0
return reward
# 训练 Q-learning 模型
num_episodes = 1000
for episode in range(num_episodes):
state = 0
while state != maze_map.size - 1:
state, Q_table = q_learning(state, maze_map, Q_table, alpha, gamma, epsilon)
# 测试 Q-learning 模型
state = 0
steps = 0
while state != maze_map.size - 1 and steps < maze_map.size:
steps += 1
action = actions[np.argmax(Q_table[state])]
state = get_next_state(state, action, maze_map)
print('Step {}: {}'.format(steps, action))
```
这个例子中,我们通过 Q-learning 算法来解决迷宫问题。首先定义迷宫地图,状态空间和动作空间。然后定义 Q 表格,并初始化为 0。接着定义 Q-learning 算法,并在训练过程中不断更新 Q 表格。最后,测试 Q-learning 模型,并输出解决迷宫问题的路径。
阅读全文