遗传算法求函数最值(C语言实现)

时间: 2023-11-18 18:04:18 浏览: 69
好的,我可以为您提供一个遗传算法求函数最值的C语言实现。下面是代码: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> #include <math.h> #define POP_SIZE 100 // 种群数量 #define GENES_LEN 6 // 基因长度 #define CROSSOVER_RATE 0.7 // 交叉概率 #define MUTATION_RATE 0.001 // 变异概率 #define MAX_GENERATION 1000 // 最大迭代次数 // 随机生成一个二进制基因 int *generate_genes() { int *genes = (int *)malloc(GENES_LEN * sizeof(int)); for (int i = 0; i < GENES_LEN; i++) { genes[i] = rand() % 2; } return genes; } // 计算二进制基因所代表的十进制数值 double decode(int *genes) { double value = 0.0; for (int i = 0; i < GENES_LEN; i++) { value += genes[i] * pow(2, GENES_LEN - 1 - i); } return value; } // 计算目标函数的值 double fitness(double x) { return sin(10 * M_PI * x) / (2 * x) + pow(x - 1, 4); } // 计算种群中每个个体的适应度 double *calculate_fitness(int **pop) { double *fitness_values = (double *)malloc(POP_SIZE * sizeof(double)); for (int i = 0; i < POP_SIZE; i++) { double x = decode(pop[i]); fitness_values[i] = fitness(x); } return fitness_values; } // 从种群中选择两个个体进行交叉 void crossover(int *parent1, int *parent2, int *child1, int *child2) { if ((double)rand() / RAND_MAX < CROSSOVER_RATE) { int crossover_point = rand() % GENES_LEN; for (int i = 0; i < crossover_point; i++) { child1[i] = parent1[i]; child2[i] = parent2[i]; } for (int i = crossover_point; i < GENES_LEN; i++) { child1[i] = parent2[i]; child2[i] = parent1[i]; } } else { for (int i = 0; i < GENES_LEN; i++) { child1[i] = parent1[i]; child2[i] = parent2[i]; } } } // 对个体进行变异 void mutate(int *genes) { for (int i = 0; i < GENES_LEN; i++) { if ((double)rand() / RAND_MAX < MUTATION_RATE) { genes[i] = !genes[i]; } } } // 选择一个个体 int *select(double *fitness_values, int **pop) { double sum = 0.0; for (int i = 0; i < POP_SIZE; i++) { sum += fitness_values[i]; } double r = (double)rand() / RAND_MAX * sum; double s = 0.0; for (int i = 0; i < POP_SIZE; i++) { s += fitness_values[i]; if (s >= r) { return pop[i]; } } return pop[POP_SIZE - 1]; } // 打印最优解 void print_best(double best_x, double best_fitness, int generation) { printf("Generation %d: x = %lf, f(x) = %lf\n", generation, best_x, best_fitness); } int main() { srand(time(NULL)); // 初始化种群 int **pop = (int **)malloc(POP_SIZE * sizeof(int *)); for (int i = 0; i < POP_SIZE; i++) { pop[i] = generate_genes(); } // 开始迭代 double best_fitness = -1e100; double best_x = 0.0; for (int generation = 1; generation <= MAX_GENERATION; generation++) { double *fitness_values = calculate_fitness(pop); // 计算种群中最优解 for (int i = 0; i < POP_SIZE; i++) { double x = decode(pop[i]); double f = fitness(x); if (f > best_fitness) { best_fitness = f; best_x = x; } } print_best(best_x, best_fitness, generation); // 新种群 int **new_pop = (int **)malloc(POP_SIZE * sizeof(int *)); for (int i = 0; i < POP_SIZE; i++) { // 选择两个个体进行交叉 int *parent1 = select(fitness_values, pop); int *parent2 = select(fitness_values, pop); int *child1 = (int *)malloc(GENES_LEN * sizeof(int)); int *child2 = (int *)malloc(GENES_LEN * sizeof(int)); crossover(parent1, parent2, child1, child2); // 对交叉后的两个个体进行变异 mutate(child1); mutate(child2); new_pop[i] = child1; new_pop[i + 1] = child2; } // 释放旧种群 for (int i = 0; i < POP_SIZE; i++) { free(pop[i]); } free(pop); // 更新种群 pop = new_pop; free(fitness_values); } return 0; } ``` 这个程序使用遗传算法来求解一个函数的最值。其中,种群数量为100,每个个体的基因长度为6位,交叉概率为0.7,变异概率为0.001,最大迭代次数为1000次。您可以根据需要进行修改。

相关推荐

最新推荐

recommend-type

python 遗传算法求函数极值的实现代码

本篇将详细解释如何使用Python实现遗传算法来求解函数的极值。 首先,我们创建一个名为`Ga`的类,该类包含了遗传算法的核心组件: 1. **初始化**:`__init__`方法设置了搜索空间的边界(`boundsbegin`和`boundsend...
recommend-type

C语言模拟实现atoi函数的实例详解

C语言模拟实现atoi函数的实例详解 以下是关于C语言模拟实现atoi函数的实例详解的知识点: 1. atoi函数的实现:atoi函数的主要功能是将一个字符串转变为整数。在实现atoi函数时,需要注意指针为NULL、字符串为空...
recommend-type

常用Hash算法(C语言的简单实现)

下面小编就为大家带来一篇常用Hash算法(C语言的简单实现)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

基于C语言实现的aes256加密算法示例

总结起来,基于C语言实现的AES256加密算法需要理解并实现以下核心部分: - 结构体`aes256_context`的定义和使用 - 密钥的扩展和存储 - ECB模式的加密和解密函数 - 非线性变换函数`F()`和`FD()` - AES的S盒查找表 - ...
recommend-type

详解用python实现简单的遗传算法

在本文中,我们将深入探讨如何使用Python实现一个简单的遗传算法,并以求解函数最大值为例来阐述整个过程。 1. **初始化编码**: 在遗传算法中,问题的解决方案通常被编码为一系列的二进制串,即“基因”。在这个...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。