使用Python写一个基于SVM预测黄金价格的程序
时间: 2024-02-28 22:55:47 浏览: 202
好的,我可以为你提供一个基于SVM的黄金价格预测代码。首先,我们需要导入必要的库:
```python
import pandas as pd
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
```
然后,我们加载黄金价格数据集,并对数据进行处理:
```python
data = pd.read_csv('gold_price.csv')
X = data.drop('Price', axis=1)
y = data['Price']
scaler = StandardScaler()
X = scaler.fit_transform(X)
```
接下来,我们将数据集划分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
然后,我们使用支持向量回归(SVR)算法来训练模型:
```python
clf = SVR(kernel='linear')
clf.fit(X_train, y_train)
```
最后,我们使用测试集来评估模型的均方误差:
```python
y_pred = clf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
```
完整的代码如下:
```python
import pandas as pd
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
data = pd.read_csv('gold_price.csv')
X = data.drop('Price', axis=1)
y = data['Price']
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = SVR(kernel='linear')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
```
这个代码可以用于预测黄金价格,你可以尝试使用其他数据集和算法。需要注意的是,不同的数据集和算法可能需要不同的参数和调整,具体的调整方法可以参考Scikit-learn库的文档。
阅读全文