运行history = regressor.fit(X_train, y_train, epochs=50, validation_split=0.2)出现name 'regressor' is not defined怎么解决
时间: 2024-03-10 20:49:28 浏览: 104
这个错误提示表明你没有定义名为"regressor"的变量。你需要在运行这行代码之前,先定义一个名为"regressor"的变量。
如果你是在使用Keras或TensorFlow进行回归模型的开发,那么你需要先创建一个回归模型对象,例如:
```python
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
regressor = Sequential()
regressor.add(Dense(units=16, activation='relu', input_dim=8))
regressor.add(Dense(units=8, activation='relu'))
regressor.add(Dense(units=1, activation='linear'))
regressor.compile(optimizer='adam', loss='mean_squared_error')
```
这个例子中,我们创建了一个包含3个全连接层的神经网络,并使用"adam"优化器和均方误差作为损失函数进行编译。
然后你就可以运行`history = regressor.fit(X_train, y_train, epochs=50, validation_split=0.2)`来训练你的模型了。
相关问题
#y2 = Dense(1,name='CT' )(x) #y3 = Dense(1,name='HT' )(x) model = Model(inputs=model_input, outputs = output_layers) model.summary() model.compile(loss='mse',optimizer = 'adam',metrics=[ 'mae' ,'mse']) #model = KerasRegressor(build_fn=grid_model,verbose=1,validation_data=(testX,testY)) history = model.fit(trainX,trainY,epochs=300,validation_data=(testX,testY),batch_size=128,verbose=1)#{'EG':'mse','CT': 'mse'}什么意思
这段代码的第一行 `#y2 = Dense(1,name='CT' )(x)` 是一个注释,表示该代码行被注释掉了,不会被执行。第二行 `#y3 = Dense(1,name='HT' )(x)` 也是一个注释,表示该代码行也被注释掉了。这里作者可能在尝试不同的模型架构,但最终没有采用这部分代码。
接下来,代码定义了一个完整的神经网络模型 `model`,其中 `inputs=model_input` 表示该模型的输入层为 `model_input`,`outputs=output_layers` 表示该模型的输出层为 `output_layers`。然后,代码使用 `model.summary()` 打印模型的概要,包括每一层的名称、输出形状和参数数量等信息。
接着,代码使用 `model.compile()` 编译模型,其中 `loss='mse'` 表示使用均方误差作为损失函数,`optimizer='adam'` 表示使用 Adam 优化器进行训练,`metrics=['mae', 'mse']` 表示评估指标包括平均绝对误差和均方误差。
最后,代码使用 `model.fit()` 对模型进行训练,其中 `trainX` 和 `trainY` 分别表示训练数据集的特征和标签,`epochs=300` 表示训练 300 轮,`validation_data=(testX,testY)` 表示使用测试数据集进行验证,`batch_size=128` 表示每个 mini-batch 的大小为 128,`verbose=1` 表示显示训练进度条。注释 `#{'EG':'mse','CT': 'mse'}` 可能是作者在尝试不同的评估指标,但最终没有采用这部分代码。
def build_model(optimizer): grid_model = Sequential() grid_model.add(LSTM(50,return_sequences=True,input_shape=(30,5))) grid_model.add(LSTM(50)) grid_model.add(Dropout(0.2)) grid_model.add(Dense(1)) grid_model.compile(loss = 'mse',optimizer = optimizer) return grid_modelgrid_model = KerasRegressor(build_fn=build_model,verbose=1,validation_data=(testX,testY)) parameters = {'batch_size' : [16,20], 'epochs' : [8,10], 'optimizer' : ['adam','Adadelta'] } grid_search = GridSearchCV(estimator = grid_model, param_grid = parameters, cv = 2)
这段代码使用Keras库建立了一个LSTM模型,并使用GridSearchCV进行超参数调优。
具体来说,该模型包含两个LSTM层和一个Dense层。其中第一个LSTM层的输出需要作为第二个LSTM层的输入,因此设置了`return_sequences=True`。为了避免过拟合,还添加了一个Dropout层。模型的损失函数为均方误差,优化器可以通过参数传入`build_model`函数中。
接下来使用KerasRegressor将`build_model`函数转换为一个可被GridSearchCV调用的模型。在超参数调优过程中,需要调整的参数包括批量大小、迭代次数和优化器类型。通过GridSearchCV进行交叉验证,选择最优的超参数组合。
需要注意的是,这段代码中的`grid_model`并不是一个完整的模型,而是一个用于构建模型的函数。因此在使用GridSearchCV时,需要将`grid_model`作为参数传入。
阅读全文