regressor = SKCompat(learn.Estimator(model_fn=lstm_model, model_dir='model/'))怎么替代
时间: 2024-03-18 13:40:56 浏览: 86
如果您想使用TensorFlow的Keras API替换SKCompat包,则可以按照以下方式构建和训练您的模型:
1. 导入所需的库和模块:
```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.callbacks import ModelCheckpoint
```
2. 构建您的LSTM模型:
```
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(LSTM(units=50))
model.add(Dense(units=1))
```
3. 编译模型并指定优化器、损失函数和评价指标:
```
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])
```
4. 训练模型并保存最佳的权重:
```
filepath="model/best_weights.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_val, y_val), callbacks=[checkpoint])
```
5. 在测试集上评估模型性能:
```
loss, mae = model.evaluate(X_test, y_test)
print("Test set Mean Abs Error: {:.2f}".format(mae))
```
请注意,这里只是一个示例,您需要根据您的具体情况来调整模型架构和参数。
阅读全文