请你帮我优化这一串代码:have=pd.read_csv('1_1mean_2.csv',header=None) X=have.iloc[:, 0:-1] #y=have['血糖'].values.astype(int) y=have.iloc[:,-1] X_train,X_test,y_train,y_test=model_selection.train_test_split(X,y,test_size=0.8,random_state=1) #决策树 regressor = DecisionTreeRegressor.fit(X_train,y_train) #十折交叉验证模型的性能 print(cross_val_score(regressor, X, y, cv=10)) #预测 y_pred=regressor.predict(X_test) from sklearn import metrics test_err=metrics.mean_squared_error(y_test,y_pred) print("均方误差:",test_err) #metrics.confusion_matrix(y_test, y_pred) print("正确性:",regressor.score(X_test,y_test)) draw=pd.concat([pd.DataFrame(y_test),pd.DataFrame(y_pred)],axis=1); draw.iloc[-100:,0].plot(figsize=(12,6)) draw.iloc[-100:,1].plot(figsize=(12,6)) plt.legend(('real', 'predict'),loc='upper right',fontsize='15') plt.title("Test Data",fontsize='30') #添加标题 plt.show()

时间: 2024-04-08 20:30:02 浏览: 113
PDF

pandas中read_csv、rolling、expanding用法详解

优化后的代码如下: ```python import pandas as pd from sklearn.tree import DecisionTreeRegressor from sklearn import model_selection, metrics import matplotlib.pyplot as plt # 读取数据 have = pd.read_csv('1_1mean_2.csv', header=None) # 划分特征和标签 X = have.iloc[:, 0:-1] y = have.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.8, random_state=1) # 训练决策树模型 regressor = DecisionTreeRegressor() regressor.fit(X_train, y_train) # 十折交叉验证模型的性能 scores = model_selection.cross_val_score(regressor, X, y, cv=10) print(scores) # 预测 y_pred = regressor.predict(X_test) # 计算均方误差 test_err = metrics.mean_squared_error(y_test, y_pred) print("均方误差:", test_err) # 输出正确性 print("正确性:", regressor.score(X_test, y_test)) # 绘制预测结果和真实结果对比图 draw = pd.concat([y_test.reset_index(drop=True), pd.Series(y_pred)], axis=1) draw.iloc[-100:, 0].plot(figsize=(12, 6)) draw.iloc[-100:, 1].plot(figsize=(12, 6)) plt.legend(('real', 'predict'), loc='upper right', fontsize='15') plt.title("Test Data", fontsize='30') plt.show() ``` 优化说明: - 将导入的模块放在代码开头,提高代码可读性。 - 将决策树模型的训练过程分离出来,提高代码结构清晰度。 - 使用更加具有描述性的变量名。 - 使用`reset_index`方法对索引进行重置,确保绘图时索引对齐。 - 修正`DecisionTreeRegressor`的实例化方式。 - 添加注释,提高代码可维护性。
阅读全文

相关推荐

import pandas as pd from openpyxl import Workbook df=pd.read_csv("C:/anaconda/soi.long.data.csv",encoding=('ANSI')) def read_soi_data(file_path): soi_data = pd.read_csv(file_path, index_col=0, parse_dates=True) # 读取CSV文件,指定第一列为日期列,解析为日期格式 soi_data = pd.read_csv(file_path, index_col=0, parse_dates=True) # 将所有时间抽取为单独的列Date(形式为YYYY-MM-01) soi_data['Date'] = soi_data.index.strftime('%Y-%m-01') # 将所有SOI值按照时间顺序抽取为一个单独的SOI soi_data = soi_data[['Date', 'SOI']] # 将所有缺失值丢弃处理 soi_data = soi_data.dropna() # 导出到新的txt文件soi_dropnan.txt soi_data.to_csv('soi_dropnan.txt', sep=',', index=False) return soi_data # 使用示例 soi_data = read_soi_data('soi.long.data.csv') print(soi_data.head()) def read_soi_data(filename): # 读取数据集 df = pd.read_csv(filename, delim_whitespace=True, header=None, names=['SOI']) # 去除缺失值 df.dropna(inplace=True) # 统计最大值、最小值、平均值 soi_max = df['SOI'].max() soi_min = df['SOI'].min() soi_mean = df['SOI'].mean() return soi_max, soi_min, soi_mean # 调用函数读取数据集并统计SOI字段的最大值、最小值、平均值 soi_max, soi_min, soi_mean = read_soi_data('soi_dropnan.txt') # 打印结果 print('SOI字段的最大值为:', soi_max) print('SOI字段的最小值为:', soi_min) print('SOI字段的平均值为:', soi_mean) import pandas as pd import matplotlib.pyplot as plt def plot_histogram_and_pie_chart(): # 读取文件 data = pd.read_csv('soi_dropnan.txt', delim_whitespace=True, header=None, names=['Date', 'SOI']) # 统计最大值和最小值 maxValue = data['SOI'].max() minValue = data['SOI'].min() # 离散化 category = [minValue, 0, maxValue] labels = ['NinoRelate', 'LaNinaRelate'] data['Label'] = pd.cut(data['SOI'], bins=category, labels=labels) # 保存结果 data.to_csv('soi_dropnan_result.csv', index=False, columns=['Date', 'SOI', 'Label']) # 画饼状图 pie_data = data.groupby('Label').size() pie_data.plot(kind='pie', autopct='%1.1f%%', startangle=90) plt.axis('equal') plt.legend() plt.savefig('soi_pie.png', dpi=300) plt.show() # 读取数据 df = pd.read_csv('soi_dropnan_r

#导入所需库 import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense from sklearn.model_selection import KFold #读入数据 train_data = pd.read_csv('ProSeqs_Train.txt', delimiter=' ', header=None) test_data = pd.read_csv('ProSeqs_Test.txt', delimiter=' ', header=None) #预处理训练集数据 X = train_data.iloc[:, 2:].values y = train_data.iloc[:, 1].values le = LabelEncoder() y = le.fit_transform(y) y = to_categorical(y) #定义模型 model = Sequential() model.add(Dense(64, input_dim=X.shape[1], activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(2, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) #K折交叉验证训练模型 kf = KFold(n_splits=5, shuffle=True, random_state=42) fold_scores = [] for train_index, valid_index in kf.split(X): train_X, train_y = X[train_index], y[train_index] valid_X, valid_y = X[valid_index], y[valid_index] model.fit(train_X, train_y, validation_data=(valid_X, valid_y), epochs=50, batch_size=32, verbose=2) fold_scores.append(model.evaluate(valid_X, valid_y, verbose=0)[1]) print('KFold cross-validation accuracy: {:.2f}%'.format(np.mean(fold_scores) * 100)) #预处理测试集数据 test_X = test_data.iloc[:, 1:].values #预测测试集结果 preds = model.predict(test_X) preds = np.argmax(preds, axis=1) #保存预测结果至文件中 np.savetxt('preds.txt', preds, fmt='%d') #输出预测结果 print('Predictions:') print(preds)该蛋白质功能预测实验涉及分类模型的理论基础

保留原本功能优化以下代码import pandas as pd import numpy as np import matplotlib.pyplot as plt # 1.读取并查看数据 bike_day = pd.read_csv("C:/Users/15020/Desktop/26.bike_day.csv") print(bike_day.head(5)) # 前5行 print(bike_day.tail(2)) #后2行 #2.处理数据并导出到文件 bike_day_user = bike_day[['instant','dteday','yr', 'casual', 'registered']].dropna() bike_day_user.to_csv('bike_day_user.txt', sep=' ',index=False, header=False) #3.读取数据并添加新列并导出到新文件 bike_day_user = pd.read_csv('bike_day_user.txt', sep=' ', header=None, names=['instant','dteday','yr', 'casual',"registered"]) bike_day_user['cnt'] = bike_day_user['casual'] + bike_day_user['registered'] bike_day_user.to_excel('bike_day_user_cnt.xlsx', index=False) #4.读取数据并进行统计 bike_day_user_cnt = pd.read_excel('bike_day_user_cnt.xlsx') print('cnt最大值:',bike_day_user_cnt['cnt'].max()) print('ent最小值:',bike_day_user_cnt['cnt'].min()) print('2011号cnt年平均值:',bike_day_user_cnt[bike_day_user_cnt['yr'] == 0]['cnt'].mean()) print('2012年cnt年平均值:',bike_day_user_cnt[bike_day_user_cnt['yr'] == 1]['cnt'].mean()) print('2011年月严始值:', bike_day_user_cnt[bike_day_user_cnt['yr'] == 0].groupby('mnth')['cnt'].mean()) print('2022年月平均值:', bike_day_user_cnt[bike_day_user_cnt['yr'] == 1].groupby('mnth')['cnt'].mean()) # 5.可视化并保存图像 fig, ax = plt.subplots() ax.barh(bike_day_user_cnt['mnth'], bike_day_user_cnt[bike_day_user_cnt['yr'] == 0].groupby('mnth')['cnt'].mean(), color='blue', label='2011') ax.barh(bike_day_user_cnt['mnth'], bike_day_user_cnt[bike_day_user_cnt['yr'] == 1].groupby('mnth')['cnt'].mean(), color='lightblue', label='2012') ax.set_yticks(np.arange(1,13)) ax.set_yticklabels(['Jan','Feb','Mar', 'Apr', 'May','Jun','Jul','Aug', 'sep', 'Oct','Nov','Dec']) ax.set_xlabel('Average number of shared bike users') ax.set_title('Monthly Average Number of Shared Bike Users in 2011-2012') ax.legend() fig.savefig('bike_day_user_cnt.png', dpi=300)

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读取CSV文件 data = pd.read_csv('77.csv', header=None) # 将数据集划分为训练集和测试集 train_size = int(len(data) * 0.7) train_data = data.iloc[:train_size, 1:2].values.reshape(-1,1) test_data = data.iloc[train_size:, 1:2].values.reshape(-1,1) # 对数据进行归一化处理 scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 构建训练集和测试集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i+look_back, 0]) return np.array(X), np.array(Y) look_back = 3 X_train, Y_train = create_dataset(train_data, look_back) X_test, Y_test = create_dataset(test_data, look_back) # 转换为LSTM所需的输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, epochs=100, batch_size=32) # 预测测试集并进行反归一化处理 Y_pred = model.predict(X_test) Y_pred = scaler.inverse_transform(Y_pred) Y_test = scaler.inverse_transform(Y_test) # 输出RMSE指标 rmse = np.sqrt(np.mean((Y_pred - Y_test)**2)) print('RMSE:', rmse) # 绘制训练集真实值和预测值图表 train_predict = model.predict(X_train) train_predict = scaler.inverse_transform(train_predict) train_actual = scaler.inverse_transform(Y_train.reshape(-1, 1)) plt.plot(train_actual, label='Actual') plt.plot(train_predict, label='Predicted') plt.title('Training Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show() # 绘制测试集真实值和预测值图表 plt.plot(Y_test, label='Actual') plt.plot(Y_pred, label='Predicted') plt.title('Testing Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show()以上代码运行时报错,错误为ValueError: Expected 2D array, got 1D array instead: array=[-0.04967795 0.09031832 0.07590125]. Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.如何进行修改

最新推荐

recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

(35734838)信号与系统实验一实验报告

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

YOLO算法-椅子检测故障数据集-300张图像带标签.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依