用Python代码实现基于RNA序列数据集实验,数据集在model文件夹中: ALKBH5_Baltz2012.train.negatives.fa 是训练集负样本; ALKBH5_Baltz2012.train.positives.fa 是训练集正样本; ALKBH5_Baltz2012.val.negatives.fa 是验证集负样本; ALKBH5_Baltz2012.val.positives.fa 是验证集正样本。 用Pytorch框架搭建卷积神经网络,输出最终分类正确率。
时间: 2024-03-16 16:41:07 浏览: 101
基于Python实现卷积神经网络分类MNIST数据集【100011707】
5星 · 资源好评率100%
好的,这是一个比较复杂的问题,我会尽力为您解答。首先,您需要安装Pytorch框架以及相关依赖项。接下来,您可以按照以下步骤进行操作:
1.导入必要的库和模块
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from sklearn.metrics import accuracy_score
```
2.定义数据读取器和预处理模块
```python
class RNADataLoader:
def __init__(self, file_path):
self.file_path = file_path
def __iter__(self):
with open(self.file_path, 'r') as f:
lines = f.readlines()
for i in range(0, len(lines), 2):
yield lines[i + 1].strip()
class RNAPreprocessor:
def __init__(self, l=101):
self.l = l
self.dict = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
def __call__(self, x):
x = x.upper()
x = x.replace('U', 'T')
x = x.replace('N', 'A')
x = x.replace('R', 'A')
x = x.replace('Y', 'T')
x = x.replace('S', 'C')
x = x.replace('W', 'A')
x = x.replace('K', 'G')
x = x.replace('M', 'A')
x = x.replace('B', 'C')
x = x.replace('D', 'A')
x = x.replace('H', 'A')
x = x.replace('V', 'A')
x = [self.dict[c] for c in x]
if len(x) < self.l:
x = x + [0] * (self.l - len(x))
else:
x = x[:self.l]
return np.array(x)
```
3.定义模型
```python
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv1d(4, 16, kernel_size=5, padding=2)
self.conv2 = nn.Conv1d(16, 32, kernel_size=5, padding=2)
self.conv3 = nn.Conv1d(32, 64, kernel_size=5, padding=2)
self.pool = nn.MaxPool1d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 13, 128)
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
x = x.transpose(1, 2)
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = self.pool(torch.relu(self.conv3(x)))
x = x.view(-1, 64 * 13)
x = torch.relu(self.fc1(x))
x = torch.sigmoid(self.fc2(x))
return x
```
4.定义训练和验证函数
```python
def train(model, train_loader, val_loader, criterion, optimizer, device, epochs):
for epoch in range(epochs):
model.train()
train_loss = 0.0
train_acc = 0.0
for x, y in train_loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
outputs = model(x.float())
loss = criterion(outputs, y.float())
loss.backward()
optimizer.step()
train_loss += loss.item()
train_acc += accuracy_score(y.cpu().numpy(), (outputs.cpu().numpy() > 0.5).astype(int))
train_loss /= len(train_loader)
train_acc /= len(train_loader)
model.eval()
val_loss = 0.0
val_acc = 0.0
for x, y in val_loader:
x, y = x.to(device), y.to(device)
outputs = model(x.float())
loss = criterion(outputs, y.float())
val_loss += loss.item()
val_acc += accuracy_score(y.cpu().numpy(), (outputs.cpu().numpy() > 0.5).astype(int))
val_loss /= len(val_loader)
val_acc /= len(val_loader)
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'
.format(epoch + 1, epochs, train_loss, train_acc, val_loss, val_acc))
```
5.训练模型并输出最终分类正确率
```python
train_neg = RNADataLoader('model/ALKBH5_Baltz2012.train.negatives.fa')
train_pos = RNADataLoader('model/ALKBH5_Baltz2012.train.positives.fa')
val_neg = RNADataLoader('model/ALKBH5_Baltz2012.val.negatives.fa')
val_pos = RNADataLoader('model/ALKBH5_Baltz2012.val.positives.fa')
preprocessor = RNAPreprocessor()
train_data = [(preprocessor(x), 0) for x in train_neg] + [(preprocessor(x), 1) for x in train_pos]
val_data = [(preprocessor(x), 0) for x in val_neg] + [(preprocessor(x), 1) for x in val_pos]
train_loader = torch.utils.data.DataLoader(train_data, batch_size=128, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=128, shuffle=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ConvNet().to(device)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters())
train(model, train_loader, val_loader, criterion, optimizer, device, epochs=10)
model.eval()
test_neg = RNADataLoader('model/ALKBH5_Baltz2012.val.negatives.fa')
test_pos = RNADataLoader('model/ALKBH5_Baltz2012.val.positives.fa')
test_data = [(preprocessor(x), 0) for x in test_neg] + [(preprocessor(x), 1) for x in test_pos]
test_loader = torch.utils.data.DataLoader(test_data, batch_size=128, shuffle=False)
test_acc = 0.0
for x, y in test_loader:
x, y = x.to(device), y.to(device)
outputs = model(x.float())
test_acc += accuracy_score(y.cpu().numpy(), (outputs.cpu().numpy() > 0.5).astype(int))
test_acc /= len(test_loader)
print('Test Accuracy: {:.4f}'.format(test_acc))
```
以上代码中,我们使用了卷积神经网络(ConvNet)模型,并使用BCELoss作为损失函数,使用Adam作为优化器。在训练过程中,我们使用了10个epoch,训练结束后,我们使用验证集计算了模型的分类正确率。最后,我们使用测试集计算了模型的最终分类正确率。
阅读全文