python实现huffman编码压缩一张图像
时间: 2023-07-30 21:08:23 浏览: 95
好的,我可以帮你解决这个问题。
首先,Huffman编码是一种基于频率的编码方法,可以将出现频率较高的字符或符号用较短的编码表示,出现频率较低的字符或符号用较长的编码表示,从而减小数据的存储空间。
针对一张图像的Huffman编码压缩,我们需要先读取该图像的二进制数据,然后统计每个像素值出现的频率,根据频率构建Huffman树,生成每个像素值的编码,将像素值替换为对应的编码,并将编码输出到文件中。
下面是一个简单的Python实现:
```python
import heapq
import os
class HuffmanCoding:
def __init__(self, path):
self.path = path
self.heap = []
self.codes = {}
self.reverse_mapping = {}
# 统计每个像素值出现的频率
def make_frequency_dict(self, data):
frequency = {}
for pixel in data:
if pixel not in frequency:
frequency[pixel] = 0
frequency[pixel] += 1
return frequency
# 构建Huffman树
def build_huffman_tree(self, frequency):
for pixel in frequency:
node = HuffmanNode(pixel, frequency[pixel])
heapq.heappush(self.heap, node)
while len(self.heap) > 1:
node1 = heapq.heappop(self.heap)
node2 = heapq.heappop(self.heap)
merged = HuffmanNode(None, node1.frequency + node2.frequency)
merged.left = node1
merged.right = node2
heapq.heappush(self.heap, merged)
# 生成每个像素值的编码
def make_codes_helper(self, root, current_code):
if root is None:
return
if root.pixel is not None:
self.codes[root.pixel] = current_code
self.reverse_mapping[current_code] = root.pixel
return
self.make_codes_helper(root.left, current_code + "0")
self.make_codes_helper(root.right, current_code + "1")
def make_codes(self):
root = heapq.heappop(self.heap)
current_code = ""
self.make_codes_helper(root, current_code)
# 将像素值替换为对应的编码,并将编码输出到文件中
def get_encoded_data(self, data):
encoded_data = ""
for pixel in data:
encoded_data += self.codes[pixel]
padded_length = 8 - len(encoded_data) % 8
for i in range(padded_length):
encoded_data += "0"
padded_info = "{0:08b}".format(padded_length)
encoded_data = padded_info + encoded_data
b = bytearray()
for i in range(0, len(encoded_data), 8):
byte = encoded_data[i:i+8]
b.append(int(byte, 2))
return bytes(b)
# 将编码输出到文件中
def compress(self):
filename, file_extension = os.path.splitext(self.path)
output_path = filename + ".bin"
with open(self.path, 'rb') as file, open(output_path, 'wb') as output:
data = file.read()
frequency = self.make_frequency_dict(data)
self.build_huffman_tree(frequency)
self.make_codes()
encoded_data = self.get_encoded_data(data)
output.write(encoded_data)
print("Compressed file saved as", output_path)
class HuffmanNode:
def __init__(self, pixel, frequency):
self.pixel = pixel
self.frequency = frequency
self.left = None
self.right = None
self.code = ""
if __name__ == '__main__':
path = "/path/to/image.jpg"
h = HuffmanCoding(path)
h.compress()
```
这段代码可以对指定的图像进行Huffman编码压缩,并将压缩后的数据输出到一个新文件中。你只需要将代码中的 `path` 变量修改为你要压缩的图像的路径即可。
阅读全文