python训练问答模型
时间: 2023-06-23 22:59:25 浏览: 107
训练问答模型可以使用Python中的各种深度学习框架,如TensorFlow、PyTorch和Keras等。以下是一个使用PyTorch实现的简单问答模型的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# 定义数据集类
class QADataset(Dataset):
def __init__(self, questions, answers):
self.questions = questions
self.answers = answers
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
question = self.questions[idx]
answer = self.answers[idx]
return question, answer
# 定义问答模型
class QAModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super(QAModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.gru = nn.GRU(embedding_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, vocab_size)
def forward(self, x):
x = self.embedding(x)
x, _ = self.gru(x)
x = self.fc(x)
return x
# 加载数据集
questions = ["What is your name?", "How old are you?", "Where are you from?"]
answers = ["My name is ChitGPT.", "I am an AI model, so I don't have an age.", "I was developed by CSDN."]
dataset = QADataset(questions, answers)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
# 初始化模型
vocab_size = 10000
embedding_dim = 256
hidden_dim = 512
model = QAModel(vocab_size, embedding_dim, hidden_dim)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
for question, answer in dataloader:
question = question.squeeze(0)
answer = answer.squeeze(0)
# 前向传播
output = model(question)
# 计算损失
loss = criterion(output.view(-1, vocab_size), answer.view(-1))
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Epoch [{}/{}], Loss: {:.4f}".format(epoch+1, num_epochs, loss.item()))
# 测试模型
test_question = "What is ChitGPT?"
test_question = torch.tensor([tokenizer.encode(test_question)])
output = model(test_question)
predicted_answer = tokenizer.decode(torch.argmax(output, dim=2).squeeze(0).tolist())
print(predicted_answer)
```
这是一个简单的模型,它使用了一个GRU层来编码问题,并使用一个全连接层来预测答案。在训练过程中,我们使用交叉熵损失函数和Adam优化器来优化模型。在测试过程中,我们输入一个问题字符串,并使用训练好的模型预测答案。
阅读全文