paddlenlp模块下DatasetBuilder类如何加载本地自定义数据,请代码展示
时间: 2024-02-24 09:55:16 浏览: 146
加载本地自定义数据可以使用PaddleNLP中的DatasetBuilder类,具体步骤如下:
1. 创建一个继承自DatasetBuilder的自定义数据集类,并实现其中的process方法。
```python
from paddlenlp.datasets import DatasetBuilder
class MyDataset(DatasetBuilder):
def _get_data(self, mode, **kwargs):
# mode参数指定是训练集还是测试集
# kwargs可以用来传递其他参数
pass
def process(self, **kwargs):
# 读取数据并进行预处理
pass
```
2. 在process方法中读取数据并进行预处理,返回一个字典数据。
```python
def process(self, **kwargs):
data = []
with open('data.txt', 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line:
continue
label, text = line.split('\t')
data.append({'label': label, 'text': text})
return data
```
3. 在自定义数据集类中实现_build_vocab方法,用于构建词表。
```python
def _build_vocab(self, examples):
# 这里可以使用PaddleNLP提供的Vocab类进行词表构建
pass
```
4. 使用自定义数据集类加载数据。
```python
my_dataset = MyDataset()
train_ds = my_dataset.get_train_examples()
test_ds = my_dataset.get_test_examples()
```
完整代码如下:
```python
from paddlenlp.datasets import DatasetBuilder, MapDataset
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.utils.log import logger
class MyDataset(DatasetBuilder):
def _get_data(self, mode, **kwargs):
pass
def process(self, **kwargs):
data = []
with open('data.txt', 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line:
continue
label, text = line.split('\t')
data.append({'label': label, 'text': text})
return data
def _build_vocab(self, examples):
pass
def get_labels(self):
return ["0", "1"]
def convert_example(example,
tokenizer,
max_seq_length=512,
is_test=False):
query, label = example['text'], example.get('label', None)
tokenized_input = tokenizer(
query,
max_seq_len=max_seq_length,
truncation=True,
return_attention_mask=True,
return_token_type_ids=False,
return_special_tokens_mask=True)
input_ids = tokenized_input['input_ids']
attention_mask = tokenized_input['attention_mask']
special_tokens_mask = tokenized_input['special_tokens_mask']
if not is_test:
return input_ids, attention_mask, special_tokens_mask, label
else:
return input_ids, attention_mask, special_tokens_mask
def create_dataloader(dataset,
mode='train',
batch_size=1,
batchify_fn=None,
trans_fn=None):
if trans_fn:
dataset = dataset.map(trans_fn)
shuffle = True if mode == 'train' else False
batch_sampler = paddle.io.DistributedBatchSampler(
dataset, batch_size=batch_size, shuffle=shuffle)
return paddle.io.DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
if __name__ == '__main__':
# 加载自定义数据集
my_dataset = MyDataset()
train_ds = my_dataset.get_train_examples()
# 构建词表
tokenizer = paddlenlp.data.JiebaTokenizer()
my_dataset._build_vocab(train_ds)
# 定义数据处理函数和batchify函数
trans_fn = lambda example: convert_example(example, tokenizer)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # input_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # attention_mask
Stack(), # special_tokens_mask
Stack(dtype='int64') # label
): fn(samples)
# 创建dataloader
train_loader = create_dataloader(
train_ds,
mode='train',
batch_size=32,
batchify_fn=batchify_fn,
trans_fn=trans_fn)
for batch in train_loader:
input_ids, attention_mask, special_tokens_mask, label = batch
logger.info('input_ids shape: %s' % str(input_ids.shape))
logger.info('attention_mask shape: %s' % str(attention_mask.shape))
logger.info('special_tokens_mask shape: %s' %
str(special_tokens_mask.shape))
logger.info('label shape: %s' % str(label.shape))
break
```
其中,convert_example函数用于将样本转换为模型输入格式,create_dataloader函数用于创建dataloader。
阅读全文