pso-knn多分类并输出评价指标python
时间: 2024-01-16 17:05:03 浏览: 126
好的,针对您的问题,我可以给您提供一些思路和代码示例:
首先,您需要导入相关的库和数据集。假设您已经有了训练集和测试集,可以使用以下代码导入:
```python
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import accuracy_score
from pyswarm import pso
# 读入数据集
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
```
接下来,您需要将数据集拆分为特征和标签。这可以使用以下代码完成:
```python
# 拆分特征和标签
X_train = train.iloc[:, :-1]
y_train = train.iloc[:, -1]
X_test = test.iloc[:, :-1]
y_test = test.iloc[:, -1]
```
然后,您可以使用PSO算法来优化KNN分类器的参数。这可以使用以下代码完成:
```python
# 定义分类器和评价指标
clf = KNeighborsClassifier()
def objective_function(x):
clf.set_params(n_neighbors=int(x[0]), weights=x[1])
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
return -accuracy_score(y_test, y_pred)
# 定义参数范围和PSO算法
lb = [1, ['uniform', 'distance']]
ub = [10, ['uniform', 'distance']]
xopt, fopt = pso(objective_function, lb, ub, swarmsize=100, maxiter=50)
# 输出最优参数
print("n_neighbors: ", int(xopt[0]))
print("weights: ", xopt[1])
```
最后,您可以使用得到的最优参数来训练KNN分类器,并进行预测和评估。这可以使用以下代码完成:
```python
# 训练分类器
clf = KNeighborsClassifier(n_neighbors=int(xopt[0]), weights=xopt[1])
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
```
希望这些代码能够帮助到您,如果您还有其他问题或需要更详细的解释,请随时问我。
阅读全文