python通过librosa读取一段wav语音信号进行普通滤波、维纳滤波、卡尔曼滤波、自适应滤波等滤波方法消除或压制嗓声的代码
时间: 2023-07-10 19:37:24 浏览: 313
Python实现自适应滤波器,谱减法,维纳滤波和小波分解【语音信号处理实战】.zip
5星 · 资源好评率100%
好的,以下是基于librosa库的Python代码示例,实现了普通滤波、维纳滤波、卡尔曼滤波、自适应滤波等滤波方法,可以用于消除或压制语音信号中的嗓声。
```python
import numpy as np
import scipy.signal as signal
import librosa
import soundfile as sf
# 读取wav文件
filename = 'your_file.wav'
y, sr = librosa.load(filename, sr=16000)
# 普通滤波
def low_pass_filter(y, sr, cutoff_freq):
nyq_freq = sr / 2
norm_cutoff_freq = cutoff_freq / nyq_freq
b, a = signal.butter(4, norm_cutoff_freq, 'low')
return signal.filtfilt(b, a, y)
# 维纳滤波
def wiener_filter(y, noise, snr):
y_fft = np.fft.fft(y)
noise_fft = np.fft.fft(noise)
psd_y = np.abs(y_fft) ** 2 / len(y_fft)
psd_noise = np.abs(noise_fft) ** 2 / len(noise_fft)
psd_signal = psd_y - psd_noise / (10 ** (snr / 10))
psd_signal[psd_signal < 0] = 0
psd_signal_fft = np.sqrt(psd_signal)
y_filtered = np.fft.ifft(y_fft * psd_signal_fft)
return np.real(y_filtered)
# 卡尔曼滤波
def kalman_filter(y):
n_iter = len(y)
sz = (n_iter,) # size of array
x = -0.37727*np.ones(sz) # truth value (typo in example at top of p. 13 calls this z)
z = y # observations (normal about x, sigma=0.1)
Q = 1e-5 # process variance
# allocate space for arrays
xhat = np.zeros(sz) # a posteri estimate of x
P = np.zeros(sz) # a posteri error estimate
xhatminus = np.zeros(sz) # a priori estimate of x
Pminus = np.zeros(sz) # a priori error estimate
K = np.zeros(sz) # gain or blending factor
R = 0.1 ** 2 # estimate of measurement variance, change to see effect
# intial guesses
xhat[0] = 0.0
P[0] = 1.0
for k in range(1, n_iter):
# time update
xhatminus[k] = xhat[k - 1]
Pminus[k] = P[k - 1] + Q
# measurement update
K[k] = Pminus[k] / (Pminus[k] + R)
xhat[k] = xhatminus[k] + K[k] * (z[k] - xhatminus[k])
P[k] = (1 - K[k]) * Pminus[k]
return xhat
# 自适应滤波
def adaptive_filter(y, noise, mu):
y_filtered = np.zeros_like(y)
w = np.zeros(len(y))
for n in range(len(y)):
y_hat = np.dot(w, noise[n:n+len(w)])
e = y[n] - y_hat
w += mu * e * noise[n:n+len(w)]
y_filtered[n] = y_hat
return y_filtered
# 滤波处理
y_low_pass = low_pass_filter(y, sr, 500) # 普通滤波
y_wiener = wiener_filter(y, y_low_pass, 10) # 维纳滤波
y_kalman = kalman_filter(y_wiener) # 卡尔曼滤波
y_adaptive = adaptive_filter(y_kalman, y_low_pass, 0.001) # 自适应滤波
# 保存滤波后的语音信号
sf.write('your_filtered_file.wav', y_adaptive, sr)
```
注意:以上代码仅供参考,具体滤波效果需要根据实际情况进行参数调整。
阅读全文