mask_rcnn中rois是怎么来的?是proposal_layer函数吗?proposal_layer函数的作用是什么,具体输入输出是什么?
时间: 2024-05-29 09:15:49 浏览: 95
是的,`rois`是通过`proposal_layer`函数生成的。`proposal_layer`函数的作用是根据RPN网络输出的候选框(即Region Proposal)来生成真正的RoI(Region of Interest),即将RPN输出的候选框进一步处理,得到具有更准确目标定位的RoI。具体来说,`proposal_layer`函数将所有候选框按照得分从高到低排序,然后选取前N个(N是预先设定的)候选框作为RoI输出,同时对每个RoI进行一些预处理操作,如裁剪、缩放等,得到固定大小的RoI。最终,`proposal_layer`函数将RoI输出给网络的下一层进行进一步特征提取和目标分类。
`proposal_layer`函数的输入包括:
- `bottom[0]`:RPN网络输出的候选框,大小为`(N, 5)`,其中N是候选框的数量,5个维度分别表示候选框的坐标和得分。
- `bottom[1]`:用于指定输入数据的形状,大小为`(1, 5)`,其中5个维度分别表示batch大小、通道数、高度、宽度和最大RoI数量。
- `bottom[2]`:输入数据的实际形状,大小为`(1, 5)`,其中5个维度分别表示batch大小、通道数、高度、宽度和最大RoI数量。
`proposal_layer`函数的输出包括:
- `top[0]`:生成的RoI,大小为`(num_rois, 5)`,其中num_rois是实际生成的RoI数量,5个维度分别表示batch索引、左上角坐标、右下角坐标。
阅读全文