python用uct算法实现井字棋
时间: 2023-05-11 14:02:14 浏览: 185
python实现井字棋小游戏
5星 · 资源好评率100%
可以使用以下代码实现:
```
import random
class Node:
def __init__(self, state, parent=None):
self.state = state
self.parent = parent
self.children = []
self.wins = 0
self.visits = 0
def add_child(self, child_state):
child = Node(child_state, self)
self.children.append(child)
return child
def update(self, result):
self.visits += 1
self.wins += result
def fully_expanded(self):
return len(self.children) == len(self.state.get_legal_moves())
def best_child(self, c_param=1.4):
choices_weights = [
(c.wins / c.visits) + c_param * math.sqrt((2 * math.log(self.visits) / c.visits))
for c in self.children
]
return self.children[choices_weights.index(max(choices_weights))]
def rollout(self):
current_rollout_state = self.state
while not current_rollout_state.is_terminal():
possible_moves = current_rollout_state.get_legal_moves()
if not possible_moves:
break
move = random.choice(possible_moves)
current_rollout_state = current_rollout_state.move(move)
return current_rollout_state.game_result()
def backpropagate(self, result):
node = self
while node is not None:
node.update(result)
node = node.parent
class UCT:
def __init__(self, time_limit=None, iteration_limit=None):
if time_limit:
self.time_limit = time_limit
self.limit_type = 'time'
elif iteration_limit:
self.iteration_limit = iteration_limit
self.limit_type = 'iterations'
else:
raise ValueError("Must supply either time_limit or iteration_limit")
self.states = []
def uct_search(self, state):
self.states = []
root_node = Node(state)
self.states.append(root_node.state)
if self.limit_type == 'time':
time_limit = time.time() + self.time_limit
while time.time() < time_limit:
self.uct_iteration(root_node)
else:
for i in range(self.iteration_limit):
self.uct_iteration(root_node)
best_child = root_node.best_child(c_param=0)
return best_child.state.last_move
def uct_iteration(self, root_node):
node = root_node
state = root_node.state.clone()
# Select
while node.fully_expanded() and not state.is_terminal():
node = node.best_child()
state = state.move(node.state.last_move)
self.states.append(state)
# Expand
if not state.is_terminal():
unexplored_move = random.choice(state.get_legal_moves())
state = state.move(unexplored_move)
self.states.append(state)
node = node.add_child(state)
# Simulate
result = node.rollout()
# Backpropagate
node.backpropagate(result)
```
这是一个基于 UCT 算法的井字棋 AI,可以在 Python 中使用。
阅读全文