def read_img_and_convert_to_binary(filename): #读取待处理的图片 original_img = cv2.imread(filename) # print(original_img) #将原图分辨率缩小SCALSIZE倍,减少计算复杂度 original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA) #降噪 blur = cv2.GaussianBlur(original_img, (5, 5), 0) #将彩色图转化成灰度图 img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY) #图片开(opening)处理,用来降噪,使图片中的字符边界更圆滑,没有皱褶 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel) kernel2 = np.ones((3,3), np.uint8) opening = cv2.dilate(opening, kernel2, iterations=1) # Otsu's thresholding after Gaussian filtering # 采用otsu阈值法将灰度图转化成只有0和1的二值图 blur = cv2.GaussianBlur(opening,(13,13),0) #ret, binary_img = cv2.threshold(img_gray, 120, 1, cv2.THRESH_BINARY_INV) ret,binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) return original_img,binary_img
时间: 2024-04-09 10:29:57 浏览: 247
这段代码的大致思路如下:
1. 通过cv2.imread函数读取指定文件名的图片,赋值给original_img变量。
2. 将原图的分辨率缩小SCALSIZE倍,以减少计算复杂度。这里使用cv2.resize函数进行图像缩放,并将结果赋值给original_img变量。
3. 使用cv2.GaussianBlur函数对原图进行模糊处理,以降噪,结果保存在blur变量中。
4. 将模糊处理后的图像转换为灰度图像,使用cv2.cvtColor函数将blur变量转换为灰度图像,并将结果保存在img_gray变量中。
5. 使用cv2.morphologyEx函数对灰度图像进行开操作(opening),以进一步降噪并使字符边界更圆滑。这里使用一个3x3的矩形结构元素进行开操作,结果保存在opening变量中。
6. 使用cv2.dilate函数对opening变量进行膨胀操作,以填充字符内部的空洞,结果保存在opening变量中。
7. 使用cv2.GaussianBlur函数对opening变量进行模糊处理,以平滑图像,结果保存在blur变量中。
8. 使用Otsu阈值法(cv2.THRESH_OTSU)将模糊处理后的图像转换为二值图像。这里使用cv2.threshold函数,并将结果保存在binary_img变量中。
9. 返回原始图像original_img和二值图像binary_img。
这段代码的主要目的是读取一张图片,并对其进行预处理,包括缩小分辨率、降噪、灰度化、开操作、膨胀、模糊和二值化等步骤。最终返回原始图像和处理后的二值图像。
相关问题
讲解这段代码:def read_img_and_convert_to_binary(filename): #读取待处理的图片 original_img = cv2.imread(filename) # print(original_img) #将原图分辨率缩小SCALSIZE倍,减少计算复杂度 original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA) #降噪 blur = cv2.GaussianBlur(original_img, (5, 5), 0) #将彩色图转化成灰度图 img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY) #图片开(opening)处理,用来降噪,使图片中的字符边界更圆滑,没有皱褶 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel) kernel2 = np.ones((3,3), np.uint8) opening = cv2.dilate(opening, kernel2, iterations=1) # Otsu's thresholding after Gaussian filtering # 采用otsu阈值法将灰度图转化成只有0和1的二值图 blur = cv2.GaussianBlur(opening,(13,13),0) #ret, binary_img = cv2.threshold(img_gray, 120, 1, cv2.THRESH_BINARY_INV) ret,binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) return original_img,binary_img
这段代码是一个函数,名为`read_img_and_convert_to_binary`,它的功能是读取一张待处理的图片并将其转换为二值图像。下面是对代码的逐行解释:
1. `original_img = cv2.imread(filename)`:使用OpenCV库的`imread`函数读取指定路径的图片,并将其存储在`original_img`变量中。
2. `original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA)`:将原图的分辨率缩小`SCALSIZE`倍,通过调整图像大小减少计算复杂度,结果存储在`original_img`变量中。
3. `blur = cv2.GaussianBlur(original_img, (5, 5), 0)`:使用高斯模糊对`original_img`进行降噪处理,减少图像中的噪点,结果存储在`blur`变量中。
4. `img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)`:将降噪后的彩色图像转换为灰度图像,便于后续处理,结果存储在`img_gray`变量中。
5. `kernel = np.ones((3, 3), np.uint8)`:创建一个3x3的矩阵,用于后续图像形态学操作。
6. `opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)`:对灰度图像进行形态学开运算(opening),通过腐蚀和膨胀操作使字符边界更加平滑,结果存储在`opening`变量中。
7. `kernel2 = np.ones((3,3), np.uint8)`:创建另一个3x3的矩阵,用于后续膨胀操作。
8. `opening = cv2.dilate(opening, kernel2, iterations=1)`:对开运算后的图像进行膨胀操作,进一步平滑字符边界,结果仍存储在`opening`变量中。
9. `blur = cv2.GaussianBlur(opening,(13,13),0)`:再次使用高斯模糊对图像进行降噪处理,参数(13,13)表示高斯核的大小。
10. `ret, binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)`:使用Otsu阈值法将灰度图像转换为二值图像。该阈值法会自动选择一个合适的阈值,将图像分为黑白两部分,结果存储在`binary_img`变量中。
11. 最后,函数返回原始图像`original_img`和二值图像`binary_img`。
这段代码主要进行了图像预处理的步骤,包括降噪、灰度化、形态学操作和阈值处理,最终得到二值图像以供后续处理使用。
# 图像读取和预处理import cv2import numpy as npdef read_img(img_path): img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 return img# 数据增强from keras.preprocessing.image import ImageDataGeneratortrain_datagen = ImageDataGenerator( rescale=1./255, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest')val_datagen = ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory( train_dir, target_size=(150, 150), batch_size=32, class_mode='binary')validation_generator = val_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='binary')
这段代码是关于图像读取和预处理的,读取图片并进行处理,将图像转换为 RGB 格式,改变像素值的范围以便网络训练使用。同时,还包括数据增强的部分,通过对数据进行旋转、平移、拉伸、翻转等操作,增加数据集的多样性,提高模型的鲁棒性和泛化能力。最后,使用 Keras 提供的 ImageDataGenerator 类生成训练集和验证集的数据流。其中,训练集和验证集的图片都被缩放为 150x150 的大小,并且指定了 batch_size 和 class_mode 等参数。
阅读全文