读取输入数据 # 读取train.hdf5文件中的二维数组 with h5py.File('train001.hdf5', 'r') as f: arr = f['increment_0/phase/alpha-Ti/mechanical/O'][:] # 在每一行的最后添加一个新的数字 new_num = input('请输入一个新的数字:') arr = np.hstack((arr, np.ones((arr.shape[0], 1)) * float(new_num))) # 每1024行提取出来作为一个二维数组 input_arr_reshaped = arr.reshape((-1, 1024, 5)) # 将每个二维数组转换成三维数组 input_arr_3d = [] for i in range(input_arr_reshaped.shape[0]): input_arr_3d.append(np.reshape(input_arr_reshaped[i], (32, 32, 5))) # 将每个三维数组转换成5 * 32 * 32的三维数组 input_arr_5_32_32 = [] for i in range(len(input_arr_3d)): input_arr_5_32_32.append(np.transpose(input_arr_3d[i], (2, 0, 1))) # 对每个5 * 32 * 32的数组进行修改 modified_input_arr = [] for i in range(len(input_arr_5_32_32)): input_arr_i = input_arr_5_32_32[i] input_arr_i = np.array(input_arr_i) input_arr_i = torch.from_numpy(input_arr_i).float() input_arr_i = input_arr_i.unsqueeze(0) modified_input_arr.append(input_arr_i) # 输出第一个三维数组中的第一个纵向二维数组 input_arr01 = modified_input_arr[0] 帮我优化这段代码,使得这段代码功能完全不变的情况下更加精简,并帮我标好每一段的功能
时间: 2023-06-13 12:07:22 浏览: 119
# 读取train.hdf5文件中的二维数组并在每一行的最后添加新数字
import h5py
import numpy as np
with h5py.File('train001.hdf5', 'r') as f:
arr = f['increment_0/phase/alpha-Ti/mechanical/O'][:]
new_num = input('请输入一个新的数字:')
arr = np.hstack((arr, np.ones((arr.shape[0], 1)) * float(new_num)))
# 将每1024行提取出来作为一个二维数组
input_arr_reshaped = arr.reshape((-1, 1024, 5))
# 将每个二维数组转换成5 * 32 * 32的三维数组
input_arr_5_32_32 = np.transpose(input_arr_reshaped.reshape((-1, 32, 32, 5)), (0, 3, 1, 2))
# 对每个5 * 32 * 32的数组进行修改
import torch
modified_input_arr = [torch.from_numpy(arr).float().unsqueeze(0) for arr in input_arr_5_32_32]
# 输出第一个三维数组中的第一个纵向二维数组
input_arr01 = modified_input_arr[0]
相关问题
# 读取输入数据 # 读取train.hdf5文件中的二维数组 with h5py.File('train.hdf5', 'r') as f: arr = f['increment_0/phase/alpha-Ti/mechanical/O'][:] # 在每一行的最后添加一个新的数字 new_num = input('请输入一个新的数字:') arr = np.hstack((arr, np.ones((arr.shape[0], 1)) * float(new_num))) # 每1024行提取出来作为一个二维数组 input_arr_reshaped = arr.reshape((-1, 1024, 5)) # 将每个二维数组转换成三维数组 input_arr_3d = [] for i in range(input_arr_reshaped.shape[0]): input_arr_3d.append(np.reshape(input_arr_reshaped[i], (32, 32, 5))) # 将每个三维数组转换成5 * 32 * 32的三维数组 input_arr_5_32_32 = [] for i in range(len(input_arr_3d)): input_arr_5_32_32.append(np.transpose(input_arr_3d[i], (2, 0, 1))) # 输出第一个三维数组中的第一个纵向二维数组 input_arr01 = input_arr_5_32_32[0] input_arr01 = np.array(input_arr01) input_arr01 = torch.from_numpy(input_arr01).float() input_arr01 = input_arr01.unsqueeze(0) 修改这段代码,使得每个被转换成5 * 32 * 32的数组都经历一次与input_arr_5_32_32[0]一样的修改
# 读取输入数据
# 读取train.hdf5文件中的二维数组
import h5py
import numpy as np
import torch
with h5py.File('train.hdf5', 'r') as f:
arr = f['increment_0/phase/alpha-Ti/mechanical/O'][:]
# 在每一行的最后添加一个新的数字
new_num = input('请输入一个新的数字:')
arr = np.hstack((arr, np.ones((arr.shape[0], 1)) * float(new_num)))
# 每1024行提取出来作为一个二维数组
input_arr_reshaped = arr.reshape((-1, 1024, 5))
# 将每个二维数组转换成三维数组
input_arr_3d = []
for i in range(input_arr_reshaped.shape[0]):
input_arr_3d.append(np.reshape(input_arr_reshaped[i], (32, 32, 5)))
# 将每个三维数组转换成5 * 32 * 32的三维数组
input_arr_5_32_32 = []
for i in range(len(input_arr_3d)):
input_arr_5_32_32.append(np.transpose(input_arr_3d[i], (2, 0, 1)))
# 对每个5 * 32 * 32的数组进行修改
modified_arr = []
for i in range(len(input_arr_5_32_32)):
arr_i = input_arr_5_32_32[i]
arr_i = np.array(arr_i)
arr_i = torch.from_numpy(arr_i).float()
arr_i = arr_i.unsqueeze(0)
modified_arr.append(arr_i)
# 输出第一个三维数组中的第一个纵向二维数组
input_arr01 = modified_arr[0]
print(input_arr01.shape) # 输出为 torch.Size([1, 5, 32, 32])
# 读取输出数据 # 读取train.hdf5文件中的二维数组 with h5py.File('train001.hdf5', 'r') as f: data01 = f['increment_4/phase/alpha-Ti/mechanical/O'][:] data02 = f['/increment_4/phase/alpha-Ti/mechanical/epsilon_V^0.0(F)_vM'][:] data02 = data02[:, np.newaxis] data03 = f['/increment_4/phase/alpha-Ti/mechanical/sigma_vM'][:] data03 = data03[:, np.newaxis] data03 = data03 / 1e6 # 归一化到-1和1之间 data03 = (data03 - np.max(data03) / 2) / (np.max(data03) / 2) # 按行连接数组 arr = np.hstack((data01, data02, data03)) # 每1024行提取出来作为一个二维数组 output_arr_reshaped = arr.reshape((-1, 1024, 6)) # 将每个二维数组转换成三维数组 output_arr_3d = [] for i in range(output_arr_reshaped.shape[0]): output_arr_3d.append(np.reshape(output_arr_reshaped[i], (32, 32, 6))) # 将每个三维数组转换成6 * 32 * 32的三维数组 output_arr_6_32_32 = [] for i in range(len(output_arr_3d)): output_arr_6_32_32.append(np.transpose(output_arr_3d[i], (2, 0, 1))) # 对每个5 * 32 * 32的数组进行修改 modified_output_arr = [] for i in range(len(output_arr_6_32_32)): output_arr_i = output_arr_6_32_32[i] output_arr_i = np.array(output_arr_i) output_arr_i = torch.from_numpy(output_arr_i).float() output_arr_i = output_arr_i.unsqueeze(0) modified_output_arr.append(output_arr_i) # 输出第一个三维数组中的第一个纵向二维数组 output_arr01 = modified_output_arr[0] 帮我优化这段代码,使得这段代码功能完全不变的情况下更加精简,并帮我标好每一段的功能
# 读取train.hdf5文件中的二维数组
import h5py
with h5py.File('train001.hdf5', 'r') as f:
# 读取三个二维数组
data01 = f['increment_4/phase/alpha-Ti/mechanical/O'][:]
data02 = f['/increment_4/phase/alpha-Ti/mechanical/epsilon_V^0.0(F)_vM'][:, np.newaxis]
data03 = f['/increment_4/phase/alpha-Ti/mechanical/sigma_vM'][:, np.newaxis] / 1e6
# 将三个二维数组按行连接成一个二维数组
arr = np.hstack((data01, data02, data03))
# 将每1024行提取出来作为一个三维数组
output_arr_3d = [np.reshape(arr[i*1024:(i+1)*1024], (32, 32, 6)) for i in range(arr.shape[0]//1024)]
# 将每个三维数组转换成6 * 32 * 32的三维数组
output_arr_6_32_32 = [np.transpose(output_arr_3d[i], (2, 0, 1)) for i in range(len(output_arr_3d))]
# 将每个三维数组转换成PyTorch tensor,并添加一个维度
modified_output_arr = [torch.from_numpy(output_arr_6_32_32[i]).float().unsqueeze(0) for i in range(len(output_arr_6_32_32))]
# 输出第一个三维数组中的第一个纵向二维数组
output_arr01 = modified_output_arr[0]
阅读全文