Lucas-Kanade光流算法、基于Kalman滤波的光流算法,基于Horn-Schunck光流算法matlab精确度代码
时间: 2023-12-01 07:07:15 浏览: 97
Lucas-Kanade光流算法的matlab实现:
```matlab
function [u,v] = lucaskanade(frame1,frame2,window_size)
% convert frames to grayscale
if size(frame1, 3) == 3
frame1 = rgb2gray(frame1);
end
if size(frame2, 3) == 3
frame2 = rgb2gray(frame2);
end
% calculate gradients
fx = conv2(frame1,[-1 1; -1 1],'valid');
fy = conv2(frame1,[-1 -1; 1 1],'valid');
ft = conv2(frame2, ones(2), 'valid') + conv2(frame1, -ones(2), 'valid');
u = zeros(size(frame1));
v = zeros(size(frame2));
% iterate through each pixel in the frame
for i = window_size+1:size(fx,1)-window_size-1
for j = window_size+1:size(fx,2)-window_size-1
% extract the window around the pixel
Ix = fx(i-window_size:i+window_size, j-window_size:j+window_size);
Iy = fy(i-window_size:i+window_size, j-window_size:j+window_size);
It = ft(i-window_size:i+window_size, j-window_size:j+window_size);
% flatten the windows into vectors
Ix = Ix(:);
Iy = Iy(:);
b = -It(:);
A = [Ix Iy];
% solve the equation Ax = b
if rank(A'*A) >= 2
nu = pinv(A)*b;
else
nu = [0;0];
end
u(i,j)=nu(1);
v(i,j)=nu(2);
end
end
end
```
基于Kalman滤波的光流算法matlab实现:
```matlab
function [u,v] = kalmanflow(frame1,frame2,window_size)
% convert frames to grayscale
if size(frame1, 3) == 3
frame1 = rgb2gray(frame1);
end
if size(frame2, 3) == 3
frame2 = rgb2gray(frame2);
end
% calculate gradients
fx = conv2(frame1,[-1 1; -1 1],'valid');
fy = conv2(frame1,[-1 -1; 1 1],'valid');
ft = conv2(frame2, ones(2), 'valid') + conv2(frame1, -ones(2), 'valid');
u = zeros(size(frame1));
v = zeros(size(frame2));
% iterate through each pixel in the frame
for i = window_size+1:size(fx,1)-window_size-1
for j = window_size+1:size(fx,2)-window_size-1
% extract the window around the pixel
Ix = fx(i-window_size:i+window_size, j-window_size:j+window_size);
Iy = fy(i-window_size:i+window_size, j-window_size:j+window_size);
It = ft(i-window_size:i+window_size, j-window_size:j+window_size);
% flatten the windows into vectors
Ix = Ix(:);
Iy = Iy(:);
b = -It(:);
A = [Ix Iy];
% initial guess for velocity
nu = pinv(A)*b;
% initialize Kalman filter
x = nu;
P = eye(2);
Q = 0.1*eye(2);
R = 0.1*eye(2);
% iterate through each frame
for k = 1:10
% predict next state
x = A*x;
P = A*P*A' + Q;
% update state based on measurement
z = [fx(i+k,j+k); fy(i+k,j+k)];
K = P*A'*inv(A*P*A' + R);
x = x + K*(z - A*x);
P = (eye(2) - K*A)*P;
end
u(i,j)=x(1);
v(i,j)=x(2);
end
end
end
```
基于Horn-Schunck光流算法matlab实现:
```matlab
function [u, v] = hornschunck(frame1, frame2, alpha, iterations)
% convert frames to grayscale
if size(frame1, 3) == 3
frame1 = rgb2gray(frame1);
end
if size(frame2, 3) == 3
frame2 = rgb2gray(frame2);
end
% calculate gradients
fx = conv2(frame1, [-1 1; -1 1], 'valid');
fy = conv2(frame1, [-1 -1; 1 1], 'valid');
ft = conv2(frame2, ones(2), 'valid') + conv2(frame1, -ones(2), 'valid');
% initialize velocity vectors
u = zeros(size(frame1));
v = zeros(size(frame2));
% iterate through each pixel in the frame
for i = 1:iterations
% calculate average velocity for each pixel
u_avg = conv2(u, 0.25*[1 1; 1 1], 'same');
v_avg = conv2(v, 0.25*[1 1; 1 1], 'same');
% calculate intermediate variables
rho = fx.*u_avg + fy.*v_avg + ft;
delta = alpha^2 + fx.^2 + fy.^2;
% update velocity vectors
u = u_avg - fx.*rho./delta;
v = v_avg - fy.*rho./delta;
end
end
```
阅读全文