fdata.rename( columns={' total_bill':'消费总额',' tip':'小费',' sex';'性别','smoker':'是否吸烟','day':'星期','time':'聚餐时间','size':'人数']
时间: 2023-06-19 22:08:14 浏览: 175
该代码存在一些语法错误,正确的代码如下:
```
fdata.rename(columns={'total_bill': '消费总额', 'tip': '小费', 'sex': '性别', 'smoker': '是否吸烟', 'day': '星期', 'time': '聚餐时间', 'size': '人数'}, inplace=True)
```
注意以下几点:
- `columns` 是一个字典类型,其中键为旧列名,值为新列名。
- 冒号 `:` 是用于分隔键和值的符号,应该是英文冒号 `:` 而非中文冒号 `:`。
- 各个键值对之间应该用逗号 `,` 分隔。
- 字符串类型的键和值应该用单引号 `'` 或双引号 `"` 括起来。
- 最后,需要使用 `inplace=True` 选项来直接修改原始数据,否则需要将结果赋给一个新的变量。
相关问题
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']= False %matplotlib inline fdata=pd.read_excel(r"C:\Users\小杜羽\Desktop\图\example.xlsx") fdata.head() fdata.describe() fdata.rename(columns={'total_bill': '消费总额', 'tip': '小费', 'sex': '性别', 'smoker': '是否吸烟', 'day': '星期', 'time': '聚餐时间', 'size': '人数'}, inplace=True) fdata.head() fdata['人均消费']=round(fdata['消费总额']/fdata['人数'],2) fdata.head() fdata.query('是否吸烟="Yes"&性别="Male"&人均消费>15') fdata.plot(kind='scatter',x='消费总额',y='小费') fdata.groupby('性别')['小费'].mean() print(fdata['星期'], unique()) r=fdata.groupby('星期')['小费'].mean() fig=r,plot(kind ='bar',x='星期',y='小费',fontsize=12, rot=30) fig.axes.title.set_size(16) r=fdata.groupby(['聚餐时间段'])['小费']. mean() fig=r.plot(kind='bar',x='聚餐时间段',y='小费', fontsize=15, rot=30) fig.axes.title.set_size(16)
这是一段 Python 代码,主要使用了 pandas、numpy、matplotlib 库对一个餐厅的消费数据进行了分析和可视化。具体的分析和可视化内容包括:
1. 读取数据文件 example.xlsx,并对数据进行基本的查看和描述统计。
2. 对数据的列名进行更改,使得更加易读。
3. 计算人均消费,并新增一列。
4. 查询出是否吸烟、性别为男性且人均消费大于15的记录。
5. 绘制消费总额与小费之间的散点图。
6. 按性别对小费进行分组,并计算平均值。
7. 按星期对小费进行分组,并计算平均值,并绘制柱状图。
8. 按聚餐时间段对小费进行分组,并计算平均值,并绘制柱状图。
需要注意的是,代码中可能有一些语法错误,比如最后一行的 fig=r.plot(... 应该是 fig=r.plot.bar(...。
给出相同功能的代码import os import numpy as np import nibabel as nib import imageio from PIL import Image def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" + name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = np.uint8(Image.fromarray(silce_seg).convert('L')) silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 silce_vol = np.uint8(Image.fromarray(silce_vol).convert('L')) imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 return num if __name__ == '__main__': path = r'C:\Users\Administrator\Desktop\LiTS2017' savepath = r'C:\Users\Administrator\Desktop\2D-LiTS2017' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)
这段代码与之前的代码实现不同,它是用于将3D医学图像数据转换为2D图像的。具体来说,它实现了以下功能:
1. 读取niifile文件,提取数据。
2. 将数据保存为图片。
3. 根据阈值判断是否需要保存该图片。
这个代码可以用于医学图像的预处理,如将3D CT或MRI图像数据转换为2D图像进行训练或展示。
阅读全文