fdata= pd. read_excel("C:\Users\小杜羽\Desktop\图")
时间: 2023-06-20 09:06:21 浏览: 100
这段代码会报错,因为读取Excel文件时需要指定文件的具体名称,而不是文件所在的文件夹路径。你需要将代码修改为以下形式:
```python
import pandas as pd
fdata = pd.read_excel(r"C:\Users\小杜羽\Desktop\图\example.xlsx")
```
这里假设你要读取的Excel文件名为example.xlsx,且该文件位于C:\Users\小杜羽\Desktop\图目录下。注意在路径前面加上“r”表示这是一个原始字符串,防止路径中的反斜杠被转义。
相关问题
替换掉此代码里的import cv2模块,import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)
替换掉此代码里的import cv2模块,可以使用Pillow库中的Image模块进行替换。具体实现方式如下:
```python
import os
import numpy as np
import nibabel as nib
import imageio
from PIL import Image
def read_niifile(niifilepath): # 读取niifile文件
img = nib.load(niifilepath) # 提取niifile文件
img_fdata = img.get_fdata(dtype='float32')
return img_fdata
def save_fig(niifilepath, savepath, num, name): # 保存为图片
name = name.split('-')[1]
filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name
filepath_vol = niifilepath + "volume\\" + "volume-" +name
savepath_seg = savepath + "segmentation\\"
savepath_vol = savepath + "volume\\"
if not os.path.exists(savepath_seg):
os.makedirs(savepath_seg)
if not os.path.exists(savepath_vol):
os.makedirs(savepath_vol)
fdata_vol = read_niifile(filepath_vol)
fdata_seg = read_niifile(filepath_seg)
(x, y, z) = fdata_seg.shape
total = x * y
for k in range(z):
silce_seg = fdata_seg[:, :, k]
if silce_seg.max() == 0:
continue
else:
silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255
silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1]
if (np.sum(silce_seg == 255) / total) > 0.015:
silce_vol = fdata_vol[:, :, k]
silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255
# 保存为png格式
Image.fromarray(silce_seg.astype(np.uint8)).save(os.path.join(savepath_seg, '{}.png'.format(num)))
Image.fromarray(silce_vol.astype(np.uint8)).save(os.path.join(savepath_vol, '{}.png'.format(num)))
num += 1
return num
if __name__ == '__main__':
path= 'E:\\dataset\\LiTS17\\'
savepath = 'E:\\dataset\\LiTS17\\2d\\'
filenames = os.listdir(path + "segmentation")
num = 0
for filename in filenames:
num = save_fig(path, savepath, num, filename)
```
解释每一行代码import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)
这段代码实现了将医学图像数据集中的nifti格式数据转换为png格式的图像数据,并将其分别保存到对应的文件夹中。下面是每行代码的解释:
```python
import os
import numpy as np
import nibabel as nib
import imageio
import cv2
```
导入需要用到的Python库:os、numpy、nibabel、imageio和cv2。
```python
def read_niifile(niifilepath):
# 读取niifile文件
img = nib.load(niifilepath)
# 提取niifile文件
img_fdata = img.get_fdata(dtype='float32')
return img_fdata
```
定义一个函数read_niifile,用于读取nifti格式文件。首先使用nibabel库中的load函数读取nifti文件,然后使用get_fdata()方法提取文件数据,并返回提取的数据。
```python
def save_fig(niifilepath, savepath, num, name):
# 保存为图片
name = name.split('-')[1]
filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name
filepath_vol = niifilepath + "volume\\" + "volume-" + name
savepath_seg = savepath + "segmentation\\"
savepath_vol = savepath + "volume\\"
if not os.path.exists(savepath_seg):
os.makedirs(savepath_seg)
if not os.path.exists(savepath_vol):
os.makedirs(savepath_vol)
fdata_vol = read_niifile(filepath_vol)
fdata_seg = read_niifile(filepath_seg)
(x, y, z) = fdata_seg.shape
total = x * y
for k in range(z):
silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片
if silce_seg.max() == 0:
continue
else:
silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255
silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1]
if (np.sum(silce_seg == 255) / total) > 0.015:
silce_vol = fdata_vol[:, :, k]
silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255
imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg)
imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol)
num += 1
# 将切片信息保存为png格式
return num
```
定义一个函数save_fig,用于将nifti格式文件转换为png格式的图像数据,并将其保存到对应文件夹中。这个函数有四个参数:niifilepath,原始nifti文件所在的路径;savepath,保存png文件的路径;num,当前已保存的图像切片数量;name,当前nifti文件的名称。
首先,根据传入的nifti文件名,生成对应的分割文件路径和体积文件路径,并在保存png文件的路径下创建两个子文件夹,分别用于保存分割图像和体积图像。
然后,调用read_niifile函数读取分割文件和体积文件的数据,并提取分割数据的shape属性。
接下来,使用for循环遍历分割数据的第三维,即不同角度的切片。如果当前切片的最大像素值为0,则跳过这个切片;否则,对切片进行归一化处理,并使用cv2.threshold函数将像素值小于1的设置为0,像素值大于等于1的设置为255。
如果当前切片中白色像素点所占比例大于0.015,则读取对应位置的体积数据,并对其进行归一化处理。最后,使用imageio.imwrite函数将分割图像和体积图像保存为png格式,并将num加1。
最后,函数返回保存的图像数量num。
```python
if __name__ == '__main__':
path= 'E:\\dataset\\LiTS17\\'
savepath = 'E:\\dataset\\LiTS17\\2d\\'
filenames = os.listdir(path + "segmentation")
num = 0
for filename in filenames:
num = save_fig(path, savepath, num, filename)
```
如果这个Python文件作为程序入口运行(而不是被import),则执行以下代码块。首先,定义原始nifti文件所在的路径path和保存png文件的路径savepath。然后,获取分割文件夹下的所有文件名,并使用for循环遍历这些文件名,调用save_fig函数将每个nifti文件转换为png格式并保存到对应的文件夹中,同时更新num的值以记录已经保存的图像数量。
阅读全文