导入数据深度神经与模糊算法相结合的python代码
时间: 2023-07-15 22:14:18 浏览: 97
抱歉,你提供的问题有些模糊。下面我将给出两个方向的代码实现,分别是深度神经网络和模糊算法。
1. 深度神经网络
以下是一个基于Keras的深度神经网络的示例代码,用于分类MNIST手写数字数据集。
```python
import tensorflow as tf
from tensorflow import keras
# 加载数据集
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0
# 构建模型
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
```
2. 模糊算法
以下是一个基于Scikit-Fuzzy的模糊控制器的示例代码,用于控制一个简单的水箱水位。
```python
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl
# 定义输入和输出变量
water_level = ctrl.Antecedent(np.arange(0, 101, 1), 'water_level')
valve_opening = ctrl.Consequent(np.arange(0, 101, 1), 'valve_opening')
# 定义模糊集
water_level['low'] = fuzz.trimf(water_level.universe, [0, 0, 50])
water_level['medium'] = fuzz.trimf(water_level.universe, [0, 50, 100])
water_level['high'] = fuzz.trimf(water_level.universe, [50, 100, 100])
valve_opening['low'] = fuzz.trimf(valve_opening.universe, [0, 0, 50])
valve_opening['medium'] = fuzz.trimf(valve_opening.universe, [0, 50, 100])
valve_opening['high'] = fuzz.trimf(valve_opening.universe, [50, 100, 100])
# 定义规则
rule1 = ctrl.Rule(water_level['low'], valve_opening['high'])
rule2 = ctrl.Rule(water_level['medium'], valve_opening['medium'])
rule3 = ctrl.Rule(water_level['high'], valve_opening['low'])
# 构建控制器
controller = ctrl.ControlSystem([rule1, rule2, rule3])
simulator = ctrl.ControlSystemSimulation(controller)
# 运行模拟
simulator.input['water_level'] = 60
simulator.compute()
print(simulator.output['valve_opening'])
```
以上代码仅供参考,具体实现可能需要根据数据集和问题进行调整。
阅读全文