lyapunov指数matlab
时间: 2023-07-27 11:06:23 浏览: 136
要计算Lyapunov指数,需要用到非线性动力系统中的雅可比矩阵。以下是一种基于Matlab的计算方法:
1. 首先,需要定义一个非线性动力系统的ODE函数,例如:
```
function dydt = myODE(t,y)
% 定义非线性动力系统的ODE函数
% 输入:t - 时间变量;y - 系统状态变量
% 输出:dydt - 系统状态变量的导数
% 这里假设系统是一个二维的Lorenz系统
sigma = 10;
beta = 8/3;
rho = 28;
dydt = [sigma*(y(2)-y(1)); y(1)*(rho-y(3))-y(2); y(1)*y(2)-beta*y(3)];
end
```
2. 然后,需要定义一个计算Lyapunov指数的函数,例如:
```
function lambda = myLyapunov(odefun, tspan, y0, pert, steps)
% 计算Lyapunov指数
% 输入:odefun - 非线性动力系统的ODE函数;tspan - 时间区间;y0 - 初始状态变量;
% pert - 扰动向量;steps - 步数
% 输出:lambda - Lyapunov指数
options = odeset('RelTol',1e-6,'AbsTol',1e-6);
[t,y] = ode45(odefun,tspan,y0,options);
n = length(y);
v = zeros(n,1);
v(1) = pert/norm(pert);
for i = 2:n
J = myJacobian(odefun,y(i-1,:));
[~,S,~] = svd(J);
v(i,:) = S*v(i-1,:)';
v(i,:) = v(i,:)/norm(v(i,:));
end
lambda = sum(log(abs(diag(S))))/steps;
end
```
3. 最后,需要定义一个计算雅可比矩阵的函数,例如:
```
function J = myJacobian(odefun,y)
% 计算雅可比矩阵
% 输入:odefun - 非线性动力系统的ODE函数;y - 系统状态变量
% 输出:J - 雅可比矩阵
n = length(y);
J = zeros(n);
h = 1e-6;
for i = 1:n
y1 = y;
y1(i) = y(i) + h;
f1 = odefun(0,y1);
y2 = y;
y2(i) = y(i) - h;
f2 = odefun(0,y2);
J(:,i) = (f1-f2)/(2*h);
end
end
```
使用这个方法,可以计算Lorenz系统的Lyapunov指数,例如:
```
tspan = [0 100];
y0 = [1 1 1];
pert = [0.1 0.1 0.1];
steps = 1000;
lambda = myLyapunov(@myODE,tspan,y0,pert,steps);
```
注意:这个方法只适用于非线性动力系统。对于线性动力系统,Lyapunov指数可以直接通过矩阵乘积计算。
阅读全文
相关推荐















