# Mapping to [c], cmean self.fc1_m = nn.Linear(512, 256) self.fc2_m = nn.Linear(256, 128) self.fc3_m = nn.Linear(128, zdim) self.fc_bn1_m = nn.BatchNorm1d(256) self.fc_bn2_m = nn.BatchNorm1d(128)是什么意思
时间: 2024-04-09 21:30:43 浏览: 154
这段代码是一个神经网络模型的定义,用于进行特征映射(Mapping)和计算均值(Mean)。具体解释如下:
- `self.fc1_m = nn.Linear(512, 256)`:这一行代码定义了一个线性层(Linear Layer),将输入维度为512的特征映射到维度为256的特征空间。
- `self.fc2_m = nn.Linear(256, 128)`:这一行代码定义了另一个线性层,将输入维度为256的特征映射到维度为128的特征空间。
- `self.fc3_m = nn.Linear(128, zdim)`:这一行代码定义了第三个线性层,将输入维度为128的特征映射到维度为zdim的特征空间。其中,zdim是一个变量,表示输出特征的维度。
- `self.fc_bn1_m = nn.BatchNorm1d(256)` 和 `self.fc_bn2_m = nn.BatchNorm1d(128)`:这两行代码定义了两个批标准化层(Batch Normalization Layer),用于对输入进行标准化处理,加速训练过程和提高模型性能。
总之,这段代码定义了一个神经网络模型,通过多个线性层和批标准化层对输入特征进行映射和处理,最终得到一个具有zdim维度的特征表示。这样的操作常用于深度学习中的特征提取和降维任务。
相关问题
A. Encoding Network of PFSPNet The encoding network is divided into three parts. In the part I, RNN is adopted to model the processing time pij of job i on all machines, which can be converted into a fixed dimensional vector pi. In the part II, the number of machines m is integrated into the vector pi through the fully connected layer, and the fixed dimensional vector p˜i is output. In the part III, p˜i is fed into the convolution layer to improve the expression ability of the network, and the final output η p= [ η p1, η p2,..., η pn] is obtained. Fig. 2 illustrates the encoding network. In the part I, the modelling process for pij is described as follows, where WB, hij , h0 are k-dimensional vectors, h0, U, W, b and WB are the network parameters, and f() is the mapping from RNN input to hidden layer output. The main steps of the part I are shown as follows. Step 1: Input pij to the embedding layer and then obtain the output yij = WB pij ; Step 2: Input yi1 and h0 to the RNN and then obtain the hidden layer output hi1 = f(yi1,h0; U,W, b). Let p1 = h1m ; Step 3: Input yij and hi,j−1, j = 2, 3 ··· , m into RNN in turn, and then obtain the hidden layer output hij = f(yij ,hi,j−1; U,W, b), j = 2, 3 ··· , m. Let pi = him . In the part II, the number of machines m and the vector pi are integrated by the fully connected layer. The details are described as follows. WB and h˜i are d-dimensional vectors, WB W and ˜b are network parameters, and g() denotes the mapping from the input to the output of full connection layer. Step 1: Input the number of machines m to the embedding layer, and the output m = WB m is obtained。Step 2: Input m and pi to the fully connected layer and then obtain the output hi = g([m, pi];W, b); Step 3: Let pi = Relu(hi). In the part III, pi, i = 1, 2,...,n are input into onedimensional convolution layer. The final output vector η pi, i = 1, 2, ··· , n are obtained after the output of convolutional layer goes through the Relu layer.首先逐行仔细的分析此过程,其次怎么使用pytorch用EncoderNetwork类完全实现这个过程的所有功能和步骤
首先,我们需要定义一个EncoderNetwork类,它应该包含三个部分:RNN模型、全连接层和卷积层。以下是一个简单的实现:
```
import torch
import torch.nn as nn
class EncoderNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(EncoderNetwork, self).__init__()
# RNN Model
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
# Fully Connected Layer
self.fc = nn.Linear(hidden_size + 1, output_size)
# Convolutional Layer
self.conv1d = nn.Conv1d(output_size, output_size, kernel_size=1)
# ReLU activation function
self.relu = nn.ReLU()
def forward(self, x, m):
# Part I: RNN Model
y = x.view(x.size(0), -1)
h0 = torch.zeros(1, x.size(0), self.rnn.hidden_size).to(x.device)
out, _ = self.rnn(y, h0)
p = out[:, -1, :]
# Part II: Fully Connected Layer
m = m.view(-1, 1)
h = self.fc(torch.cat((p, m), dim=1))
p_ = self.relu(h)
# Part III: Convolutional Layer
p_ = p_.permute(0, 2, 1)
p_ = self.conv1d(p_)
p_ = self.relu(p_)
p_ = p_.permute(0, 2, 1)
return p_
```
在上面的代码中,我们定义了一个EncoderNetwork类,它有三个部分:RNN模型、全连接层和卷积层。在forward函数中,我们首先输入pij的张量x和机器数量m,然后按照Part I、Part II和Part III的顺序进行处理。最后,我们返回最终的输出张量。
在这个类的构造函数中,我们定义了RNN模型、全连接层、卷积层和ReLU激活函数。在forward函数中,我们首先将输入x转换为一个2D张量,并将h0初始化为全零张量。然后我们使用RNN模型处理x,得到输出out。在这个过程中,我们只需要使用out的最后一个时间步,即out[:,-1,:],作为RNN模型的输出p。接下来,我们将机器数量m与p连接起来,然后将它们输入到全连接层中。最后,我们将全连接层的输出张量输入到卷积层中,并经过ReLU激活函数处理。
在使用这个类时,我们需要传入三个参数:输入大小input_size、隐藏层大小hidden_size和输出大小output_size。然后,我们可以使用encoder = EncoderNetwork(input_size, hidden_size, output_size)来创建一个EncoderNetwork对象。最后,我们可以使用encoder.forward(x, m)来计算x和m的输出张量。
self-attention和transformer
### Self-Attention Mechanism
Self-attention, also known as intra-attention, is a type of attention that relates different positions within a single sequence to compute a representation of the same sequence[^2]. This mechanism allows each position in an encoder or decoder layer to attend over all positions in the previous layer's output. The self-attention mechanism computes three vectors for every word in the sentence: Query (Q), Key (K), and Value (V). These are linear transformations with learned weight matrices applied to the input embeddings.
The computation involves calculating scores using dot products between queries and keys followed by applying softmax function on these scores which results into weights used to produce weighted sum of values:
\[ \text{Attention}(Q,K,V)=\text{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right)V \]
where \( d_k \) represents dimensionality of key vectors[^4].
### Transformer Model Architecture
Transformers rely entirely on multi-head self-attention mechanisms without requiring recurrent neural networks (RNNs) or convolutional layers. A transformer consists primarily of two parts—an encoder stack and a decoder stack—each composed of multiple identical layers stacked atop one another[^1].
#### Encoder Stack
Each encoder layer contains:
- Multi-head self-attention sublayer where information from other words' representations can be incorporated.
- Feed-forward fully connected network operating independently across features at each position after normalization steps like residual connections around both components plus dropout regularization techniques.
#### Decoder Stack
Similarly structured but includes masked multi-head self-attentions so future tokens do not influence current predictions during training time along with regular non-masked ones looking back only previously generated outputs when generating new token sequences step-by-step through autoregressive fashion[^5].
```python
import torch.nn as nn
class Transformer(nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, d_model=512, nhead=8, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1):
super().__init__()
# Define embedding layers for source and target vocabularies
self.src_embedding = nn.Embedding(src_vocab_size, d_model)
self.tgt_embedding = nn.Embedding(tgt_vocab_size, d_model)
# Positional encoding component shared among encoders & decoders
self.positional_encoding = PositionalEncoding(d_model, dropout)
# Instantiate stacks of N identical layers containing MHA + FFN pairs per side
self.encoder_stack = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward),
num_layers=num_encoder_layers
)
self.decoder_stack = nn.TransformerDecoder(
nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward),
num_layers=num_decoder_layers
)
# Output projection layer mapping final hidden states onto vocabulary logits space
self.fc_out = nn.Linear(d_model, tgt_vocab_size)
def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
"""Forward pass."""
embedded_src = self.positional_encoding(self.src_embedding(src))
encoded_memory = self.encoder_stack(embedded_src, mask=src_mask)
embedded_tgt = self.positional_encoding(self.tgt_embedding(tgt))
decoded_output = self.decoder_stack(embedded_tgt, encoded_memory, tgt_mask=tgt_mask, memory_mask=memory_mask)
return self.fc_out(decoded_output)
def generate_square_subsequent_mask(sz):
"""Generate square masks for decoding process preventing attending ahead."""
mask = (torch.triu(torch.ones((sz, sz))) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
```
阅读全文