saver = tf.train.Checkpoint(max_to_keep=2)和saver = tf.train.Saver(max_to_keep=2)作用一致吗
时间: 2024-02-13 17:03:34 浏览: 76
不完全一致。
`saver = tf.train.Checkpoint(max_to_keep=2)` 和 `saver = tf.train.Saver(max_to_keep=2)` 都是用于保存 TensorFlow 模型的类,但是它们的使用方法略有不同。
`saver = tf.train.Saver(max_to_keep=2)` 是 TensorFlow 1.x 中的用法,用于保存整个模型或部分模型的变量。它需要在图中定义一个 `tf.train.Saver()` 对象,然后使用该对象的 `save()` 方法保存模型。
而 `saver = tf.train.Checkpoint(max_to_keep=2)` 是 TensorFlow 2.x 中的用法,用于保存整个模型或部分模型的变量。它需要在图中定义一个 `tf.train.Checkpoint()` 对象,然后使用该对象的 `save()` 方法保存模型。
两者的主要区别在于 TensorFlow 2.x 中的 `tf.train.Checkpoint()` 对象具有更好的可读性和可维护性,也更加灵活。它可以保存所有的变量和状态,而不仅仅是变量。此外,它还支持 TensorFlow 的 Eager Execution 模式。
因此,如果你正在使用 TensorFlow 2.x,建议使用 `saver = tf.train.Checkpoint(max_to_keep=2)`。如果你正在使用 TensorFlow 1.x,则可以使用 `saver = tf.train.Saver(max_to_keep=2)`。
阅读全文