给个范式Huffman编码的c代码

时间: 2023-09-21 22:05:45 浏览: 138
### 回答1: 我提供一段简单的 Huffman 编码 C 代码:#include <stdio.h> #include <stdlib.h> struct node { char data; int freq; struct node * left; struct node * right; }; struct node * huffmanTree(char data[], int freq[], int size) { struct node * left, * right, * top; // 建立最小堆 for (int i = size / 2 - 1; i >= 0; i--) { int j = i; while (j <= size / 2 - 1) { int k = 2 * j + 1; if (k + 1 < size && freq[k] > freq[k + 1]) k++; if (freq[j] <= freq[k]) break; int temp = freq[k]; freq[k] = freq[j]; freq[j] = temp; char c = data[k]; data[k] = data[j]; data[j] = c; j = k; } } // 建立 Huffman 树 for (int i = 1; i <= size - 1; i++) { left = (struct node*)malloc(sizeof(struct node)); right = (struct node*)malloc(sizeof(struct node)); // 取出两个最小的节点 left->data = data[0]; left->freq = freq[0]; left->left = left->right = NULL; right->data = data[1]; right->freq = freq[1]; right->left = right->right = NULL; freq[0] = freq[0] + freq[1]; freq[1] = freq[size - 1]; size--; // 重新建立最小堆 int j = 0; while (j <= size / 2 - 1) { int k = 2 * j + 1; if (k + 1 < size && freq[k] > freq[k + 1]) k++; if (freq[j] <= freq[k]) break; int temp = freq[k]; freq[k] = freq[j]; freq[j] = temp; char c = data[k]; data[k] = data[j]; data[j] = c; j = k; } top = (struct node*)malloc(sizeof(struct node)); top->freq = left->freq + right->freq; top->data = '$'; top->left = left; top->right = right; } return top; } ### 回答2: Huffman编码是一种无损压缩算法,用于对数据进行编码,以减少数据传输和存储的成本。下面是一个示例的Huffman编码的C代码范式: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> // 结点结构体 typedef struct Node { unsigned char data; // 字符数据 int frequency; // 字符出现的频率 struct Node *left, *right; // 左右子节点 } Node; // 创建新结点 Node* createNode(unsigned char data, int frequency) { Node* newNode = (Node*)malloc(sizeof(Node)); newNode->data = data; newNode->frequency = frequency; newNode->left = newNode->right = NULL; return newNode; } // 构建Huffman树 Node* buildHuffmanTree(unsigned char data[], int frequency[], int size) { Node *left, *right, *top; // 创建一个优先队列,用于存储Huffman树的结点 PriorityQueue* pq = createPriorityQueue(); // 将每个字符的频率作为优先级,构建Huffman树的结点 for (int i = 0; i < size; ++i) { enqueue(pq, createNode(data[i], frequency[i])); } // 直到只剩下一个结点,即为Huffman树的根结点 while (getSize(pq) > 1) { left = dequeue(pq); right = dequeue(pq); top = createNode('$', left->frequency + right->frequency); // $表示内部结点 top->left = left; top->right = right; enqueue(pq, top); } return dequeue(pq); } // 递归地打印Huffman编码 void printHuffmanCodes(Node* root, char arr[], int top) { // 叶子结点的编码位于arr[]数组中 if (root->left) { arr[top] = '0'; printHuffmanCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = '1'; printHuffmanCodes(root->right, arr, top + 1); } // 只有一个字符的结点时,打印编码 if (isLeaf(root)) { printf("%c: ", root->data); for (int i = 0; i < top; ++i) { printf("%c", arr[i]); } printf("\n"); } } // Huffman编码的主函数 void huffmanCoding(unsigned char data[], int frequency[], int size) { // 构建Huffman树 Node* root = buildHuffmanTree(data, frequency, size); // 用于存储编码的临时数组 char arr[MAX_TREE_HT], top = 0; // 打印Huffman编码 printHuffmanCodes(root, arr, top); } int main() { unsigned char data[] = { 'a', 'b', 'c', 'd', 'e', 'f' }; int frequency[] = { 5, 9, 12, 13, 16, 45 }; int size = sizeof(data) / sizeof(data[0]); // 运行Huffman编码 huffmanCoding(data, frequency, size); return 0; } ``` 这是一个简单的Huffman编码的C代码范式示例。注意,代码中使用了一些未定义的函数和数据结构,如`PriorityQueue`、`enqueue`等,需要根据实际情况进行定义和实现。此外,还需要添加一些错误检查和释放内存的代码,以确保程序的稳定性和健壮性。 ### 回答3: 以下是一个用C语言实现的Huffman编码的范例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> #define MAX_TREE_HT 100 struct MinHeapNode { char data; unsigned freq; struct MinHeapNode *left, *right; }; struct MinHeap { unsigned size; unsigned capacity; struct MinHeapNode **array; }; struct MinHeapNode* newNode(char data, unsigned freq) { struct MinHeapNode* temp = (struct MinHeapNode*)malloc( sizeof(struct MinHeapNode)); temp->left = temp->right = NULL; temp->data = data; temp->freq = freq; return temp; } struct MinHeap* createMinHeap(unsigned capacity) { struct MinHeap* minHeap = (struct MinHeap*)malloc( sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHeapNode**)malloc( minHeap->capacity * sizeof(struct MinHeapNode*)); return minHeap; } void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) { struct MinHeapNode* t = *a; *a = *b; *b = t; } void minHeapify(struct MinHeap* minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) smallest = left; if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) smallest = right; if (smallest != idx) { swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } bool isSizeOne(struct MinHeap* minHeap) { return (minHeap->size == 1); } struct MinHeapNode* extractMin(struct MinHeap* minHeap) { struct MinHeapNode* temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp; } void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) { ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = minHeapNode; } void buildMinHeap(struct MinHeap* minHeap) { int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i >= 0; --i) minHeapify(minHeap, i); } void printArr(int arr[], int n) { int i; for (i = 0; i < n; ++i) printf("%d", arr[i]); printf("\n"); } bool isLeaf(struct MinHeapNode* root) { return !(root->left) && !(root->right); } struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size) { struct MinHeap* minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) minHeap->array[i] = newNode(data[i], freq[i]); minHeap->size = size; buildMinHeap(minHeap); return minHeap; } struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) { struct MinHeapNode *left, *right, *top; struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size); while (!isSizeOne(minHeap)) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } return extractMin(minHeap); } void printCodes(struct MinHeapNode* root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (isLeaf(root)) { printf("%c: ", root->data); printArr(arr, top); } } void HuffmanCodes(char data[], int freq[], int size) { struct MinHeapNode* root = buildHuffmanTree(data, freq, size); int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); } int main() { int n; printf("请输入字符的数量: "); scanf("%d", &n); char data[n]; int freq[n]; printf("请输入字符及其频率:\n"); for (int i = 0; i < n; i++) { scanf("%s %d", &data[i], &freq[i]); } int size = sizeof(data) / sizeof(data[0]); printf("Huffman Codes:\n"); HuffmanCodes(data, freq, size); return 0; } ``` 以上是一个使用C语言实现的Huffman编码的范例代码,通过输入字符及其频率,可以输出对应的Huffman编码。
阅读全文

相关推荐

最新推荐

recommend-type

用Huffman编码实现文件压缩(含代码)

Huffman编码实现文件压缩 ...Huffman编码实现文件压缩技术是由哈夫曼树和Huffman编码两个部分组成的,前者用于构造哈夫曼树,后者用于生成Huffman编码。该技术可以广泛应用于数据压缩、图像压缩、视频压缩等领域。
recommend-type

huffman编码与解码C语言编写项目书

在C语言中实现哈弗曼编码与解码项目,主要包括以下几个关键步骤: 1. **文件导入与预处理**: 在这个阶段,我们需要读取包含字符的文件,并统计每个字符的出现频率。这通常通过创建两个数组`Code`和`w`来完成,`...
recommend-type

算法设计与分析:多元Huffman编码

本文将深入探讨一个与石子合并相关的算法问题,该问题涉及到多元Huffman编码的概念,以及如何通过算法求解最大和最小总费用。 问题背景是在一个操场的四周有n堆石子,目标是将这些石子合并成一堆,每次合并可以选择...
recommend-type

数据结构课程设计-基于Huffman编码的文件压缩与解压缩.docx

在Huffman编码中,首先需要统计源文件中各个字符的出现频率,这可以通过遍历文件得到。在设计中,定义了一个名为`HTNode`的结构体,用于存储字符及其对应的频率。`unsigned char ch`代表字符,`double weight`表示...
recommend-type

Huffman编码 程序 数据结构实验

源代码中定义了两个结构体,`HTNode`用于表示二叉树节点,包含权值、左右孩子和父节点的信息;`HuffCode`用于存储字符、权值和对应的Huffman编码。主要函数如`HuffmanTree`用于生成Huffman树,`SelectHTNode`用于...
recommend-type

基于Python和Opencv的车牌识别系统实现

资源摘要信息:"车牌识别项目系统基于python设计" 1. 车牌识别系统概述 车牌识别系统是一种利用计算机视觉技术、图像处理技术和模式识别技术自动识别车牌信息的系统。它广泛应用于交通管理、停车场管理、高速公路收费等多个领域。该系统的核心功能包括车牌定位、车牌字符分割和车牌字符识别。 2. Python在车牌识别中的应用 Python作为一种高级编程语言,因其简洁的语法和强大的库支持,非常适合进行车牌识别系统的开发。Python在图像处理和机器学习领域有丰富的第三方库,如OpenCV、PIL等,这些库提供了大量的图像处理和模式识别的函数和类,能够大大提高车牌识别系统的开发效率和准确性。 3. OpenCV库及其在车牌识别中的应用 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和模式识别的接口。在车牌识别系统中,可以使用OpenCV进行图像预处理、边缘检测、颜色识别、特征提取以及字符分割等任务。同时,OpenCV中的机器学习模块提供了支持向量机(SVM)等分类器,可用于车牌字符的识别。 4. SVM(支持向量机)在字符识别中的应用 支持向量机(SVM)是一种二分类模型,其基本模型定义在特征空间上间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM算法的核心思想是找到一个分类超平面,使得不同类别的样本被正确分类,且距离超平面最近的样本之间的间隔(即“间隔”)最大。在车牌识别中,SVM用于字符的分类和识别,能够有效地处理手写字符和印刷字符的识别问题。 5. EasyPR在车牌识别中的应用 EasyPR是一个开源的车牌识别库,它的c++版本被广泛使用在车牌识别项目中。在Python版本的车牌识别项目中,虽然项目描述中提到了使用EasyPR的c++版本的训练样本,但实际上OpenCV的SVM在Python中被用作车牌字符识别的核心算法。 6. 版本信息 在项目中使用的软件环境信息如下: - Python版本:Python 3.7.3 - OpenCV版本:opencv*.*.*.** - Numpy版本:numpy1.16.2 - GUI库:tkinter和PIL(Pillow)5.4.1 以上版本信息对于搭建运行环境和解决可能出现的兼容性问题十分重要。 7. 毕业设计的意义 该项目对于计算机视觉和模式识别领域的初学者来说,是一个很好的实践案例。它不仅能够让学习者在实践中了解车牌识别的整个流程,而且能够锻炼学习者利用Python和OpenCV等工具解决问题的能力。此外,该项目还提供了一定量的车牌标注图片,这在数据不足的情况下尤其宝贵。 8. 文件信息 本项目是一个包含源代码的Python项目,项目代码文件位于一个名为"Python_VLPR-master"的压缩包子文件中。该文件中包含了项目的所有源代码文件,代码经过详细的注释,便于理解和学习。 9. 注意事项 尽管该项目为初学者提供了便利,但识别率受限于训练样本的数量和质量,因此在实际应用中可能存在一定的误差,特别是在处理复杂背景或模糊图片时。此外,对于中文字符的识别,第一个字符的识别误差概率较大,这也是未来可以改进和优化的方向。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

网络隔离与防火墙策略:防御网络威胁的终极指南

![网络隔离](https://www.cisco.com/c/dam/en/us/td/i/200001-300000/270001-280000/277001-278000/277760.tif/_jcr_content/renditions/277760.jpg) # 1. 网络隔离与防火墙策略概述 ## 网络隔离与防火墙的基本概念 网络隔离与防火墙是网络安全中的两个基本概念,它们都用于保护网络不受恶意攻击和非法入侵。网络隔离是通过物理或逻辑方式,将网络划分为几个互不干扰的部分,以防止攻击的蔓延和数据的泄露。防火墙则是设置在网络边界上的安全系统,它可以根据预定义的安全规则,对进出网络
recommend-type

在密码学中,对称加密和非对称加密有哪些关键区别,它们各自适用于哪些场景?

在密码学中,对称加密和非对称加密是两种主要的加密方法,它们在密钥管理、计算效率、安全性以及应用场景上有显著的不同。 参考资源链接:[数缘社区:密码学基础资源分享平台](https://wenku.csdn.net/doc/7qos28k05m?spm=1055.2569.3001.10343) 对称加密使用相同的密钥进行数据的加密和解密。这种方法的优点在于加密速度快,计算效率高,适合大量数据的实时加密。但由于加密和解密使用同一密钥,密钥的安全传输和管理就变得十分关键。常见的对称加密算法包括AES(高级加密标准)、DES(数据加密标准)、3DES(三重数据加密算法)等。它们通常适用于那些需要
recommend-type

我的代码小部件库:统计、MySQL操作与树结构功能

资源摘要信息:"leetcode用例构造-my-widgets是作者为练习、娱乐或实现某些项目功能而自行开发的一个代码小部件集合。这个集合中包含了作者使用Python语言编写的几个实用的小工具模块,每个模块都具有特定的功能和用途。以下是具体的小工具模块及其知识点的详细说明: 1. statistics_from_scratch.py 这个模块包含了一些基础的统计函数实现,包括但不限于均值、中位数、众数以及四分位距等。此外,它还实现了二项分布、正态分布和泊松分布的概率计算。作者强调了使用Python标准库(如math和collections模块)来实现这些功能,这不仅有助于巩固对统计学的理解,同时也锻炼了Python编程能力。这些统计函数的实现可能涉及到了算法设计和数学建模的知识。 2. mysql_io.py 这个模块是一个Python与MySQL数据库交互的接口,它能够自动化执行数据的导入导出任务。作者原本的目的是为了将Leetcode平台上的SQL测试用例以字典格式自动化地导入到本地MySQL数据库中,从而方便在本地测试SQL代码。这个模块中的MysqlIO类支持将MySQL表导出为pandas.DataFrame对象,也能够将pandas.DataFrame对象导入为MySQL表。这个工具的应用场景可能包括数据库管理和数据处理,其内部可能涉及到对数据库API的调用、pandas库的使用、以及数据格式的转换等编程知识点。 3. tree.py 这个模块包含了与树结构相关的一系列功能。它目前实现了二叉树节点BinaryTreeNode的构建,并且提供了从列表构建二叉树的功能。这可能涉及到数据结构和算法中的树形结构、节点遍历、树的构建和操作等。利用这些功能,开发者可以在实际项目中实现更高效的数据存储和检索机制。 以上三个模块构成了my-widgets库的核心内容,它们都以Python语言编写,并且都旨在帮助开发者在特定的编程场景中更加高效地完成任务。这些工具的开发和应用都凸显了作者通过实践提升编程技能的意图,并且强调了开源精神,即将这些工具共享给更广泛的开发者群体,以便他们也能够从中受益。 通过这些小工具的使用,开发者可以更好地理解编程在不同场景下的应用,并且通过观察和学习作者的代码实现,进一步提升自己的编码水平和问题解决能力。"