给个范式Huffman编码的c代码

时间: 2023-09-21 11:05:45 浏览: 66
### 回答1: 我提供一段简单的 Huffman 编码 C 代码:#include <stdio.h> #include <stdlib.h> struct node { char data; int freq; struct node * left; struct node * right; }; struct node * huffmanTree(char data[], int freq[], int size) { struct node * left, * right, * top; // 建立最小堆 for (int i = size / 2 - 1; i >= 0; i--) { int j = i; while (j <= size / 2 - 1) { int k = 2 * j + 1; if (k + 1 < size && freq[k] > freq[k + 1]) k++; if (freq[j] <= freq[k]) break; int temp = freq[k]; freq[k] = freq[j]; freq[j] = temp; char c = data[k]; data[k] = data[j]; data[j] = c; j = k; } } // 建立 Huffman 树 for (int i = 1; i <= size - 1; i++) { left = (struct node*)malloc(sizeof(struct node)); right = (struct node*)malloc(sizeof(struct node)); // 取出两个最小的节点 left->data = data[0]; left->freq = freq[0]; left->left = left->right = NULL; right->data = data[1]; right->freq = freq[1]; right->left = right->right = NULL; freq[0] = freq[0] + freq[1]; freq[1] = freq[size - 1]; size--; // 重新建立最小堆 int j = 0; while (j <= size / 2 - 1) { int k = 2 * j + 1; if (k + 1 < size && freq[k] > freq[k + 1]) k++; if (freq[j] <= freq[k]) break; int temp = freq[k]; freq[k] = freq[j]; freq[j] = temp; char c = data[k]; data[k] = data[j]; data[j] = c; j = k; } top = (struct node*)malloc(sizeof(struct node)); top->freq = left->freq + right->freq; top->data = '$'; top->left = left; top->right = right; } return top; } ### 回答2: Huffman编码是一种无损压缩算法,用于对数据进行编码,以减少数据传输和存储的成本。下面是一个示例的Huffman编码的C代码范式: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> // 结点结构体 typedef struct Node { unsigned char data; // 字符数据 int frequency; // 字符出现的频率 struct Node *left, *right; // 左右子节点 } Node; // 创建新结点 Node* createNode(unsigned char data, int frequency) { Node* newNode = (Node*)malloc(sizeof(Node)); newNode->data = data; newNode->frequency = frequency; newNode->left = newNode->right = NULL; return newNode; } // 构建Huffman树 Node* buildHuffmanTree(unsigned char data[], int frequency[], int size) { Node *left, *right, *top; // 创建一个优先队列,用于存储Huffman树的结点 PriorityQueue* pq = createPriorityQueue(); // 将每个字符的频率作为优先级,构建Huffman树的结点 for (int i = 0; i < size; ++i) { enqueue(pq, createNode(data[i], frequency[i])); } // 直到只剩下一个结点,即为Huffman树的根结点 while (getSize(pq) > 1) { left = dequeue(pq); right = dequeue(pq); top = createNode('$', left->frequency + right->frequency); // $表示内部结点 top->left = left; top->right = right; enqueue(pq, top); } return dequeue(pq); } // 递归地打印Huffman编码 void printHuffmanCodes(Node* root, char arr[], int top) { // 叶子结点的编码位于arr[]数组中 if (root->left) { arr[top] = '0'; printHuffmanCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = '1'; printHuffmanCodes(root->right, arr, top + 1); } // 只有一个字符的结点时,打印编码 if (isLeaf(root)) { printf("%c: ", root->data); for (int i = 0; i < top; ++i) { printf("%c", arr[i]); } printf("\n"); } } // Huffman编码的主函数 void huffmanCoding(unsigned char data[], int frequency[], int size) { // 构建Huffman树 Node* root = buildHuffmanTree(data, frequency, size); // 用于存储编码的临时数组 char arr[MAX_TREE_HT], top = 0; // 打印Huffman编码 printHuffmanCodes(root, arr, top); } int main() { unsigned char data[] = { 'a', 'b', 'c', 'd', 'e', 'f' }; int frequency[] = { 5, 9, 12, 13, 16, 45 }; int size = sizeof(data) / sizeof(data[0]); // 运行Huffman编码 huffmanCoding(data, frequency, size); return 0; } ``` 这是一个简单的Huffman编码的C代码范式示例。注意,代码中使用了一些未定义的函数和数据结构,如`PriorityQueue`、`enqueue`等,需要根据实际情况进行定义和实现。此外,还需要添加一些错误检查和释放内存的代码,以确保程序的稳定性和健壮性。 ### 回答3: 以下是一个用C语言实现的Huffman编码的范例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> #define MAX_TREE_HT 100 struct MinHeapNode { char data; unsigned freq; struct MinHeapNode *left, *right; }; struct MinHeap { unsigned size; unsigned capacity; struct MinHeapNode **array; }; struct MinHeapNode* newNode(char data, unsigned freq) { struct MinHeapNode* temp = (struct MinHeapNode*)malloc( sizeof(struct MinHeapNode)); temp->left = temp->right = NULL; temp->data = data; temp->freq = freq; return temp; } struct MinHeap* createMinHeap(unsigned capacity) { struct MinHeap* minHeap = (struct MinHeap*)malloc( sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHeapNode**)malloc( minHeap->capacity * sizeof(struct MinHeapNode*)); return minHeap; } void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) { struct MinHeapNode* t = *a; *a = *b; *b = t; } void minHeapify(struct MinHeap* minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) smallest = left; if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) smallest = right; if (smallest != idx) { swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } bool isSizeOne(struct MinHeap* minHeap) { return (minHeap->size == 1); } struct MinHeapNode* extractMin(struct MinHeap* minHeap) { struct MinHeapNode* temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp; } void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) { ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = minHeapNode; } void buildMinHeap(struct MinHeap* minHeap) { int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i >= 0; --i) minHeapify(minHeap, i); } void printArr(int arr[], int n) { int i; for (i = 0; i < n; ++i) printf("%d", arr[i]); printf("\n"); } bool isLeaf(struct MinHeapNode* root) { return !(root->left) && !(root->right); } struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size) { struct MinHeap* minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) minHeap->array[i] = newNode(data[i], freq[i]); minHeap->size = size; buildMinHeap(minHeap); return minHeap; } struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) { struct MinHeapNode *left, *right, *top; struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size); while (!isSizeOne(minHeap)) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } return extractMin(minHeap); } void printCodes(struct MinHeapNode* root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (isLeaf(root)) { printf("%c: ", root->data); printArr(arr, top); } } void HuffmanCodes(char data[], int freq[], int size) { struct MinHeapNode* root = buildHuffmanTree(data, freq, size); int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); } int main() { int n; printf("请输入字符的数量: "); scanf("%d", &n); char data[n]; int freq[n]; printf("请输入字符及其频率:\n"); for (int i = 0; i < n; i++) { scanf("%s %d", &data[i], &freq[i]); } int size = sizeof(data) / sizeof(data[0]); printf("Huffman Codes:\n"); HuffmanCodes(data, freq, size); return 0; } ``` 以上是一个使用C语言实现的Huffman编码的范例代码,通过输入字符及其频率,可以输出对应的Huffman编码。

相关推荐

最新推荐

recommend-type

用Huffman编码实现文件压缩(含代码)

Huffman编码实现文件压缩 ...Huffman编码实现文件压缩技术是由哈夫曼树和Huffman编码两个部分组成的,前者用于构造哈夫曼树,后者用于生成Huffman编码。该技术可以广泛应用于数据压缩、图像压缩、视频压缩等领域。
recommend-type

算法设计与分析:多元Huffman编码

本文将深入探讨一个与石子合并相关的算法问题,该问题涉及到多元Huffman编码的概念,以及如何通过算法求解最大和最小总费用。 问题背景是在一个操场的四周有n堆石子,目标是将这些石子合并成一堆,每次合并可以选择...
recommend-type

huffman编码与解码C语言编写项目书

包括文件的导入,huffman树的建立,打印,编码与解码。有算法的详细分析,流程图,原代吗,运行结果。
recommend-type

数据结构课程设计-基于Huffman编码的文件压缩与解压缩.docx

数据结构课程设计-基于Huffman编码的文件压缩与解压缩 2.2.1结构设计 typedef struct Node { unsigned char ch;//字符 double weight;//字符的频数 int parent,lchild,rchild; }HTNode,HuffmanTree[2*N-1];//...
recommend-type

Huffman编码 程序 数据结构实验

步骤: 1.用C语言实现二叉树的说明 2.输入n个权值,并生成n个二叉树 3.对n个二叉树逐步生成Huffman树 4.对Huffman树的每个叶子结点生成编码 5.输出叶子的编码,即输出每个权值及其对应的编码
recommend-type

谷歌文件系统下的实用网络编码技术在分布式存储中的应用

"本文档主要探讨了一种在谷歌文件系统(Google File System, GFS)下基于实用网络编码的策略,用于提高分布式存储系统的数据恢复效率和带宽利用率,特别是针对音视频等大容量数据的编解码处理。" 在当前数字化时代,数据量的快速增长对分布式存储系统提出了更高的要求。分布式存储系统通过网络连接的多个存储节点,能够可靠地存储海量数据,并应对存储节点可能出现的故障。为了保证数据的可靠性,系统通常采用冗余机制,如复制和擦除编码。 复制是最常见的冗余策略,简单易行,即每个数据块都会在不同的节点上保存多份副本。然而,这种方法在面对大规模数据和高故障率时,可能会导致大量的存储空间浪费和恢复过程中的带宽消耗。 相比之下,擦除编码是一种更为高效的冗余方式。它将数据分割成多个部分,然后通过编码算法生成额外的校验块,这些校验块可以用来在节点故障时恢复原始数据。再生码是擦除编码的一个变体,它在数据恢复时只需要下载部分数据,从而减少了所需的带宽。 然而,现有的擦除编码方案在实际应用中可能面临效率问题,尤其是在处理大型音视频文件时。当存储节点发生故障时,传统方法需要从其他节点下载整个文件的全部数据,然后进行重新编码,这可能导致大量的带宽浪费。 该研究提出了一种实用的网络编码方法,特别适用于谷歌文件系统环境。这一方法优化了数据恢复过程,减少了带宽需求,提高了系统性能。通过智能地利用网络编码,即使在节点故障的情况下,也能实现高效的数据修复,降低带宽的浪费,同时保持系统的高可用性。 在音视频编解码场景中,这种网络编码技术能显著提升大文件的恢复速度和带宽效率,对于需要实时传输和处理的媒体服务来说尤其重要。此外,由于网络编码允许部分数据恢复,因此还能减轻对网络基础设施的压力,降低运营成本。 总结起来,这篇研究论文为分布式存储系统,尤其是处理音视频内容的系统,提供了一种创新的网络编码策略,旨在解决带宽效率低下和数据恢复时间过长的问题。这一方法对于提升整个系统性能,保证服务的连续性和可靠性具有重要的实践意义。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【功率因数校正秘籍】:10个步骤提升电能利用率

![【功率因数校正秘籍】:10个步骤提升电能利用率](https://img-blog.csdnimg.cn/direct/829b6c5a308c40129620b20de2ebfcd9.png) # 1. 功率因数校正概述 功率因数是衡量交流电系统中有效功率与视在功率之比的指标,反映了电能利用的效率。当功率因数较低时,系统中的无功功率会增加,导致电能损耗、电压波动和电网容量浪费等问题。 功率因数校正是一种通过增加或减少无功功率来提高功率因数的技术。通过安装无功补偿设备,如电容器或电抗器,可以抵消感性或容性负载产生的无功功率,从而提高系统中的功率因数。功率因数校正不仅可以节约电能,还可以
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

跨国媒体对南亚农村社会的影响:以斯里兰卡案例的社会学分析

本文档《音视频-编解码-关于跨国媒体对南亚农村群体的社会的社会学分析斯里兰卡案例研究G.pdf》主要探讨了跨国媒体在南亚农村社区中的社会影响,以斯里兰卡作为具体案例进行深入剖析。研究从以下几个方面展开: 1. 引言与研究概述 (1.1-1.9) - 介绍部分概述了研究的背景,强调了跨国媒体(如卫星电视、互联网等)在全球化背景下对南亚农村地区的日益重要性。 - 阐述了研究问题的定义,即跨国媒体如何改变这些社区的社会结构和文化融合。 - 提出了研究假设,可能是关于媒体对社会变迁、信息传播以及社区互动的影响。 - 研究目标和目的明确,旨在揭示跨国媒体在农村地区的功能及其社会学意义。 - 也讨论了研究的局限性,可能包括样本选择、数据获取的挑战或理论框架的适用范围。 - 描述了研究方法和步骤,包括可能采用的定性和定量研究方法。 2. 概念与理论分析 (2.1-2.7.2) - 跨国媒体与创新扩散的理论框架被考察,引用了Lerner的理论来解释信息如何通过跨国媒体传播到农村地区。 - 关于卫星文化和跨国媒体的关系,文章探讨了这些媒体如何成为当地社区共享的文化空间。 - 文献还讨论了全球媒体与跨国媒体的差异,以及跨国媒体如何促进社会文化融合。 - 社会文化整合的概念通过Ferdinand Tonnies的Gemeinshaft概念进行阐述,强调了跨国媒体在形成和维持社区共同身份中的作用。 - 分析了“社区”这一概念在跨国媒体影响下的演变,可能涉及社区成员间交流、价值观的变化和互动模式的重塑。 3. 研究计划与章节总结 (30-39) - 研究计划详细列出了后续章节的结构,可能包括对斯里兰卡特定乡村社区的实地考察、数据分析、以及结果的解读和讨论。 - 章节总结部分可能回顾了前面的理论基础,并预示了接下来将要深入研究的具体内容。 通过这份论文,作者试图通过细致的社会学视角,深入理解跨国媒体如何在南亚农村群体中扮演着连接、信息流通和文化融合的角色,以及这种角色如何塑造和影响他们的日常生活和社会关系。对于理解全球化进程中媒体的力量以及它如何塑造边缘化社区的动态变化,此篇研究具有重要的理论价值和实践意义。