题目: 某公司有一份员工绩效评估的数据集,包含了员工的一些特征信息以及他们的绩效等级。现在要求你设计一个程序,使用支持向量机算法来建立一个绩效评估模型,并对新员工进行绩效评估。 要求: 设计一个程序,使用支持向量机算法建立一个绩效评估模型。 提供必要的输入接口,例如特征数据和标签数据。 使用建立的支持向量机模型对新员工进行绩效评估,输出预测结果。 员工绩效数据集合 features = [ [5, 7], [3, 4], [8, 6], [1, 2], ] 对应等级: labels = [ "优秀", "一般", "优秀", "不及格", ] 现有新员工:new_data = [4, 5],判断Ta的等级。
时间: 2024-02-28 14:52:19 浏览: 180
好的,针对您的问题,以下是一个使用支持向量机算法建立绩效评估模型的 Python 代码:
```python
from sklearn import svm
# 员工绩效数据集
features = [
[5, 7],
[3, 4],
[8, 6],
[1, 2],
]
# 对应等级
labels = [
"优秀",
"一般",
"优秀",
"不及格",
]
# 使用支持向量机算法建立模型
clf = svm.SVC()
clf.fit(features, labels)
# 新员工特征数据
new_data = [[4, 5]]
# 使用模型预测新员工的绩效等级
result = clf.predict(new_data)
# 输出预测结果
print("新员工的绩效等级为:", result[0])
```
您可以将以上代码保存为 .py 文件,使用 Python 运行即可得到预测结果。请注意,这里的绩效等级是分类问题,所以使用的是支持向量机的分类算法。
阅读全文