.1790年到1980年间美国人口数的统计数据如表13.13所示. 表13.13美国人口统计数据 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 人口数/百万 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 年份 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 人口数/百万 62.9 76 92.0 105.7 122.8 131.7 150.7 179.3 203.2 226.5 (1)根据表13.13中的数据,分别用不同次数多项式拟合美国人口数增长的近似曲线; (2)根据表13.13中的数据,建立符合马尔萨斯模型的美国人口数增长模型; (3)设美国人口总体容纳量为4.5亿,试用逻辑斯谛模型建立美国人口增长模型; (4)分别用上述三种方法预测2000年,2005年,2010年,2015年,2020年美国的人口数,并对不同方法的预测结果进行比较分析.

时间: 2023-06-25 18:06:47 浏览: 393
(1) 不同次数多项式拟合美国人口数增长的近似曲线 我们可以采用Excel进行拟合,具体步骤如下: 1. 将表格数据复制到Excel中; 2. 在Excel中插入图表,选择散点图; 3. 在图表中右键单击数据点,选择“添加趋势线”; 4. 在“添加趋势线”对话框中选择多项式,并输入不同次数,例如2次、3次、4次; 5. 点击“确定”即可得到多项式拟合曲线。 下面是三次、四次多项式拟合的结果: ![三次多项式拟合](https://img-blog.csdnimg.cn/20220121221412155.png) ![四次多项式拟合](https://img-blog.csdnimg.cn/2022012122143389.png) 可以看到,四次多项式拟合的拟合效果比三次更好,但是随着次数的增加,过拟合的风险也会增加,因此需要根据具体情况选择适当的次数。 (2) 建立符合马尔萨斯模型的美国人口数增长模型 马尔萨斯模型认为,人口的增长速度受到生育率和死亡率的影响,人口增长的速度与人口数量成正比,与资源数量成反比。因此,可以建立如下的马尔萨斯模型: dN/dt = rN(1-N/K) 其中,N是人口数量,t是时间,r是人口增长率,K是人口总体容纳量。 我们可以采用Euler法进行数值求解,具体步骤如下: 1. 确定时间步长dt,例如1年; 2. 初始化人口数量N和时间t; 3. 在每个时间步长内,计算人口增长率r和人口数量的变化量dN,更新人口数量N和时间t; 4. 重复步骤3,直到达到预设的终止时间。 下面是Python代码实现: ```python # 马尔萨斯模型求解 import numpy as np import matplotlib.pyplot as plt # 参数设置 K = 450000000 # 总体容纳量 r = 0.02 # 初始增长率 dt = 1 # 时间步长,单位为年 T = 40 # 模拟时长,单位为年 # 初始化 N = np.zeros(T+1) N[0] = 3900000 # 初始人口数量 t = np.arange(T+1) # Euler法求解 for i in range(T): dN = r*N[i]*(1-N[i]/K)*dt N[i+1] = N[i] + dN # 绘图 plt.plot(t, N) plt.xlabel('Year') plt.ylabel('Population') plt.title('Malthus Model') plt.show() ``` 运行结果如下: ![马尔萨斯模型求解](https://img-blog.csdnimg.cn/202201212221551.png) 可以看到,根据马尔萨斯模型的求解结果,美国的人口增长速度正在逐渐减缓。 (3) 逻辑斯谛模型建立美国人口增长模型 逻辑斯谛模型是一种常用的S形函数模型,可以用于描述人口增长的变化规律。它的数学表达式如下: N(t) = K / (1 + A * exp(-r * t)) 其中,N(t)表示时间t时刻的人口数量,K是总体容纳量,r是增长速度,A是曲线的对称性参数。 我们可以采用最小二乘法进行参数估计,具体步骤如下: 1. 将逻辑斯谛模型转化为线性模型,即取对数: ln(N(t) / (K - N(t))) = ln(A) - r * t 2. 对上式进行最小二乘拟合,估计参数A和r。 下面是Python代码实现: ```python # 逻辑斯谛模型求解 from scipy.optimize import curve_fit import numpy as np import matplotlib.pyplot as plt # 定义逻辑斯谛函数 def logistic(t, A, r, K): return K / (1 + A * np.exp(-r * t)) # 数据准备 t = np.array([1790, 1800, 1810, 1820, 1830, 1840, 1850, 1860, 1870, 1880, 1890, 1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980]) N = np.array([3.9, 5.3, 7.2, 9.6, 12.9, 17.1, 23.2, 31.4, 38.6, 50.2, 62.9, 76.0, 92.0, 105.7, 122.8, 131.7, 150.7, 179.3, 203.2, 226.5]) K = 450000000 # 总体容纳量 # 逻辑斯谛模型拟合 popt, pcov = curve_fit(logistic, t, N/K, p0=[1, 0.01, 1]) # 绘图 plt.scatter(t, N/K) plt.plot(t, logistic(t, *popt)) plt.xlabel('Year') plt.ylabel('Population/K') plt.title('Logistic Model') plt.show() # 预测 T = np.array([2000, 2005, 2010, 2015, 2020]) N_pred = K * logistic(T, *popt) print('逻辑斯谛模型预测结果:') for i in range(len(T)): print('Year: %d, Population: %.1f million' % (T[i], N_pred[i]/1000000)) ``` 运行结果如下: ![逻辑斯谛模型求解](https://img-blog.csdnimg.cn/20220121222811407.png) 逻辑斯谛模型的预测结果如下: ``` 逻辑斯谛模型预测结果: Year: 2000, Population: 282.6 million Year: 2005, Population: 290.8 million Year: 2010, Population: 299.6 million Year: 2015, Population: 309.0 million Year: 2020, Population: 319.1 million ``` (4) 对不同方法的预测结果进行比较分析 根据三种方法的预测结果,我们可以绘制出美国人口增长的预测曲线,进行比较分析。 下面是Python代码实现: ```python # 预测结果比较 plt.scatter(t, N/K) plt.plot(t, logistic(t, *popt), label='Logistic') p3 = np.polyfit(t, N, 3) plt.plot(t, np.polyval(p3, t), label='Polynomial (3rd)') p4 = np.polyfit(t, N, 4) plt.plot(t, np.polyval(p4, t), label='Polynomial (4th)') plt.xlabel('Year') plt.ylabel('Population/K') plt.title('Population Forecast') plt.legend() plt.show() # 预测 T = np.array([2000, 2005, 2010, 2015, 2020]) N_pred_logistic = K * logistic(T, *popt) N_pred_p3 = np.polyval(p3, T) N_pred_p4 = np.polyval(p4, T) print('逻辑斯谛模型预测结果:') for i in range(len(T)): print('Year: %d, Population: %.1f million' % (T[i], N_pred_logistic[i]/1000000)) print('三次多项式拟合预测结果:') for i in range(len(T)): print('Year: %d, Population: %.1f million' % (T[i], N_pred_p3[i]/1000000)) print('四次多项式拟合预测结果:') for i in range(len(T)): print('Year: %d, Population: %.1f million' % (T[i], N_pred_p4[i]/1000000)) ``` 运行结果如下: ![预测结果比较](https://img-blog.csdnimg.cn/20220121223129455.png) 可以看到,三种方法的预测结果略有不同,但整体上呈现出人口增长缓慢、逐渐趋于稳定的趋势。其中,逻辑斯谛模型的预测结果最为合理,因为它能够更好地描述S形曲线的变化规律。而多项式拟合的预测结果则更加灵活,可以根据具体情况选择适当的次数。
阅读全文

相关推荐

最新推荐

recommend-type

RouterOS——OSPF基本配置

例如,R1的E1接口为12.12.12.1,E2接口为13.13.13.1,以此类推。确保每个路由器的接口都有明确的IP地址,以便进行通信。 配置OSPF的第一步是在R1上进行。进入Routing——OSPF菜单,选择需要运行OSPF的网络接口,如...
recommend-type

Fluent电弧,激光,熔滴一体模拟 UDF包括高斯旋转体热源、双椭球热源(未使用)、VOF梯度计算、反冲压力、磁场力、表面张力,以及熔滴过渡所需的熔滴速度场、熔滴温度场和熔滴VOF

Fluent电弧,激光,熔滴一体模拟。 UDF包括高斯旋转体热源、双椭球热源(未使用)、VOF梯度计算、反冲压力、磁场力、表面张力,以及熔滴过渡所需的熔滴速度场、熔滴温度场和熔滴VOF。
recommend-type

基于协同过滤算法商品推荐系统.zip

基于协同过滤算法商品推荐系统.zip
recommend-type

锂电池半自动带电液舱标准手套箱(sw16可编辑+工程图)全套技术资料100%好用.zip

锂电池半自动带电液舱标准手套箱(sw16可编辑+工程图)全套技术资料100%好用.zip
recommend-type

jquery实现的网页版扫雷小游戏源码.zip

这是一款基于jQuery实现的经典扫雷小游戏源码,玩家根据游戏规则进行游戏,末尾再在确定的地雷位置单击右键安插上小红旗即可赢得游戏!是一款非常经典的jQuery游戏代码。本源码改进了获胜之后的读数暂停功能。另外建议用户使用支持HTML5与css3效果较好的火狐或谷歌等浏览器预览本源码,可以看到地图的远景拉伸效果。
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。