帮我用python语言生成一段代码可以进行AI换脸
时间: 2023-03-15 10:56:38 浏览: 208
答案:可以使用Python语言使用OpenCV、NumPy和dlib库来实现AI换脸。下面是一段示例代码:import cv2
import numpy as np
import dlib# 使用dlib库检测出人脸
detector = dlib.get_frontal_face_detector()# 读取原始图片
img = cv2.imread("original_image.jpg")# 检测出人脸
faces = detector(img)# 遍历每一个人脸,替换成目标图片
for face in faces:
# 读取目标图片
targer_img = cv2.imread("target_image.jpg")
# 生成与原始图片相同大小的目标图片
targer_img = cv2.resize(targer_img, (face.right() - face.left(), face.bottom() - face.top()))
# 将目标图片复制到原始图片
img[face.top():face.bottom(), face.left(): face.right()] = targer_img# 保存换脸后的图片
cv2.imwrite("result_image.jpg", img)
相关问题
帮我用python写下ai换脸的代码
换脸技术需要使用到深度学习、计算机视觉等领域的知识和技术,实现起来比较复杂。以下是一个基于GAN的简单的换脸代码示例,需要使用到Python及相关的深度学习框架,如PyTorch或TensorFlow等。
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
# 定义生成器和判别器的网络结构
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, 4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 64, 4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 1, 4, stride=1, padding=0),
nn.Sigmoid()
)
def forward(self, x):
x = self.conv(x)
return x.view(-1, 1)
# 定义训练函数
def train(generator, discriminator, data_loader, optimizer_g, optimizer_d, criterion):
for epoch in range(num_epochs):
for i, (input_img, target_img) in enumerate(data_loader):
# 训练生成器
optimizer_g.zero_grad()
fake_img = generator(input_img)
output = discriminator(fake_img)
loss_g = criterion(output, torch.ones(output.size(0), 1))
loss_g.backward()
optimizer_g.step()
# 训练判别器
optimizer_d.zero_grad()
real_output = discriminator(target_img)
fake_output = discriminator(fake_img.detach())
loss_d_real = criterion(real_output, torch.ones(real_output.size(0), 1))
loss_d_fake = criterion(fake_output, torch.zeros(fake_output.size(0), 1))
loss_d = (loss_d_real + loss_d_fake) / 2
loss_d.backward()
optimizer_d.step()
# 输出训练信息
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], G_Loss: {:.4f}, D_Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(data_loader), loss_g.item(), loss_d.item()))
# 图片预处理函数
def preprocess(img_path):
img = Image.open(img_path)
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
img = transform(img)
img = img.unsqueeze(0)
return img
# 定义训练数据集和测试数据集
train_dataset = ...
test_dataset = ...
# 定义超参数
num_epochs = 100
batch_size = 16
learning_rate_g = 0.0002
learning_rate_d = 0.0002
beta1 = 0.5
beta2 = 0.999
criterion = nn.BCELoss()
# 定义生成器、判别器和优化器
generator = Generator()
discriminator = Discriminator()
optimizer_g = torch.optim.Adam(generator.parameters(), lr=learning_rate_g, betas=(beta1, beta2))
optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=learning_rate_d, betas=(beta1, beta2))
# 训练模型
train(generator, discriminator, train_dataset, optimizer_g, optimizer_d, criterion)
# 使用训练好的模型进行换脸
input_img = preprocess('input.jpg')
fake_img = generator(input_img)
fake_img = fake_img.squeeze(0)
fake_img = transforms.ToPILImage()(fake_img.detach().cpu())
fake_img.show()
```
以上代码实现的是基于GAN的换脸,具体的实现思路是将两张图片分别输入生成器和判别器,通过对抗训练的方式来不断优化生成器和判别器的参数,使得生成器可以生成与目标图片相似的图片。需要注意的是,这只是一个简单的代码示例,实际的换脸效果需要根据具体情况进行调整和优化。
用python写一个AI换脸代码
好的,下面是一个简单的用Python实现AI换脸的代码示例,仅供参考:
```python
import cv2
import dlib
import numpy as np
from imutils import face_utils
import argparse
def main():
# 解析命令行参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to input image")
ap.add_argument("-m", "--model", default="./shape_predictor_68_face_landmarks.dat", help="path to facial landmark predictor")
args = vars(ap.parse_args())
# 加载图像并进行灰度化
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 加载人脸检测器和关键点检测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["model"])
# 检测人脸并提取关键点
rects = detector(gray, 1)
for (i, rect) in enumerate(rects):
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
# 提取左眼、右眼、嘴巴和鼻子的关键点
left_eye = shape[42:48]
right_eye = shape[36:42]
mouth = shape[48:68]
nose = shape[27:36]
# 计算每个关键点的平均值
left_eye_center = np.mean(left_eye, axis=0).astype("int")
right_eye_center = np.mean(right_eye, axis=0).astype("int")
mouth_center = np.mean(mouth, axis=0).astype("int")
nose_center = np.mean(nose, axis=0).astype("int")
# 加载换脸图像
swap_img = cv2.imread("swap_image.jpg")
swap_img = cv2.resize(swap_img, (rect.width(), rect.height()))
# 提取换脸图像的关键点
swap_gray = cv2.cvtColor(swap_img, cv2.COLOR_BGR2GRAY)
swap_rects = detector(swap_gray, 1)
swap_shape = predictor(swap_gray, swap_rects[0])
swap_shape = face_utils.shape_to_np(swap_shape)
# 对换脸图像进行仿射变换,使其与当前图像的眼睛、嘴巴和鼻子位置对齐
M_left_eye = cv2.getAffineTransform(swap_shape[36:42], left_eye)
M_right_eye = cv2.getAffineTransform(swap_shape[42:48], right_eye)
M_mouth = cv2.getAffineTransform(swap_shape[48:68], mouth)
M_nose = cv2.getAffineTransform(swap_shape[27:36], nose)
swap_img = cv2.warpAffine(swap_img, M_left_eye, (image.shape[1], image.shape[0]))
swap_img = cv2.warpAffine(swap_img, M_right_eye, (image.shape[1], image.shape[0]))
swap_img = cv2.warpAffine(swap_img, M_mouth, (image.shape[1], image.shape[0]))
swap_img = cv2.warpAffine(swap_img, M_nose, (image.shape[1], image.shape[0]))
# 将换脸图像与当前图像进行融合
swap_mask = np.zeros(swap_gray.shape, dtype=np.uint8)
swap_mask = cv2.fillConvexPoly(swap_mask, cv2.convexHull(swap_shape), (255, 255, 255))
swap_mask = cv2.bitwise_not(swap_mask)
img_mask = np.zeros(image.shape, dtype=np.uint8)
img_mask[rect.top():rect.bottom(), rect.left():rect.right()] = swap_mask
swap_mask = cv2.bitwise_not(swap_mask)
swap_mask = np.stack((swap_mask,) * 3, axis=-1)
img = cv2.bitwise_and(image, swap_mask)
swap = cv2.bitwise_and(swap_img, img_mask)
result = cv2.add(img, swap)
# 显示结果
cv2.imshow("result", result)
cv2.waitKey(0)
if __name__ == '__main__':
main()
```
需要注意的是,这只是一个简单的示例,具体的实现方式和效果可能与你期望的有所不同。如果你需要更高质量的换脸效果,建议使用已有的成熟工具或者更深入的研究。
阅读全文