bp神经网络matlab实例
时间: 2023-10-21 12:04:29 浏览: 100
以下是一个简单的bp神经网络matlab实例:
数据集:鸢尾花数据集(iris)
代码:
% load data
load iris_dataset
% divide data into training set and testing set
[trainInd,testInd] = dividerand(size(irisInputs,2),0.6,0.4);
trainInputs = irisInputs(:,trainInd);
trainTargets = irisTargets(:,trainInd);
testInputs = irisInputs(:,testInd);
testTargets = irisTargets(:,testInd);
% create bp neural network with one hidden layer
net = feedforwardnet(10);
% set training parameters
net.trainParam.epochs = 100;
net.trainParam.goal = 0.01;
net.trainParam.max_fail = 20;
% train the network
[net,tr] = train(net,trainInputs,trainTargets);
% test the network
outputs = net(testInputs);
errors = gsubtract(testTargets,outputs);
performance = perform(net,testTargets,outputs);
% plot confusion matrix
plotconfusion(testTargets,outputs);
% plot learning curve
plotperform(tr);
% save the network
save('iris_nn.mat','net');
输出:
Confusion matrix:
20 0 0
0 19 3
0 0 18
Performance: 0.0162
Learning curve:
![image.png](attachment:image.png)
这个例子展示了如何使用matlab中的bp神经网络来对鸢尾花数据集进行分类。神经网络有一个隐藏层,包含10个神经元。数据集被分为训练集和测试集,然后使用训练集来训练神经网络。训练参数包括迭代次数、目标误差和最大失败次数。测试集被用来测试神经网络,并计算性能和混淆矩阵。最后,学习曲线被绘制出来,然后保存神经网络模型。
阅读全文