使用Python写一个ddqn的算法
时间: 2024-04-25 14:05:08 浏览: 286
好的,下面是使用Python实现的DDQN算法:
首先,我们需要导入所需的库:
```python
import numpy as np
import random
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
```
然后,我们需要定义一个DDQN类,该类将实现DDQN算法:
```python
class DDQN:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000) # 记忆存储器
self.gamma = 0.95 # 折扣因子
self.epsilon = 1.0 # 探索因子
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001 # 学习率
self.model = self._build_model() # 构建神经网络模型
self.target_model = self._build_model() # 构建目标网络模型
def _build_model(self):
# 构建神经网络模型
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
# 记录经验
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
# 使用epsilon-greedy策略选择动作
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
else:
return np.argmax(self.model.predict(state)[0])
def replay(self, batch_size):
# 从记忆存储器中随机抽取样本进行训练
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = self.model.predict(state)
if done:
target[0][action] = reward
else:
a = np.argmax(self.model.predict(next_state)[0])
target_next = self.target_model.predict(next_state)[0]
target[0][action] = reward + self.gamma * target_next[a]
self.model.fit(state, target, epochs=1, verbose=0)
def target_train(self):
# 更新目标网络
self.target_model.set_weights(self.model.get_weights())
def decay_epsilon(self):
# 更新epsilon的值
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
```
以上代码中,我们定义了一个DDQN类,它有以下重要方法:
- `_build_model`:构建神经网络模型;
- `remember`:记录经验;
- `act`:使用epsilon-greedy策略选择动作;
- `replay`:从记忆存储器中随机抽取样本进行训练;
- `target_train`:更新目标网络;
- `decay_epsilon`:更新epsilon的值。
接下来,我们需要使用DDQN类来训练一个CartPole游戏的智能体。我们需要定义一个函数来运行游戏,并在游戏过程中训练智能体:
```python
def run_cartpole():
env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DDQN(state_size, action_size)
batch_size = 32
EPISODES = 1000
for e in range(EPISODES):
state = env.reset()
state = np.reshape(state, [1, state_size])
score = 0
for time in range(500):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
score += reward
if done:
agent.target_train()
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, EPISODES, score, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
if agent.epsilon > agent.epsilon_min:
agent.decay_epsilon()
```
以上代码中,我们使用OpenAI的gym库来创建CartPole游戏环境,并且我们定义了一个`run_cartpole`函数,该函数将运行游戏并在游戏过程中训练智能体。
现在,我们可以运行`run_cartpole`函数来训练智能体:
```python
run_cartpole()
```
这将训练智能体,直到完成1000个回合。在每个回合结束时,智能体的目标网络将被更新,epsilon的值也将被更新。
阅读全文