>> load('CNN_model.mat'); 错误使用 load 找不到文件或目录 'CNN_model.mat'。
时间: 2023-12-11 07:05:06 浏览: 106
这个错误提示说明在当前的工作路径下找不到名为 'CNN_model.mat' 的文件。你可以使用 `cd` 命令切换到保存该文件的目录,或者在 `load` 函数中指定该文件的完整路径。例如,假设 'CNN_model.mat' 文件保存在 'D:\models' 目录下,则可以使用以下命令加载该文件:
```
load('D:\models\CNN_model.mat');
```
请确保文件路径和文件名正确,文件后缀也应该是 '.mat'。
相关问题
clear all; % TODO: Edit this to point to the folder your caffe mex file is in. % path_to_matcaffe = '/data/jkrause/cs231b/caffe-rc2/matlab/caffe'; path_to_matcaffe = 'C:/Users/DELL/Downloads/caffe-master/windows'; addpath(path_to_matcaffe) % Load up the image im = imread('peppers.png'); % Get some random image regions (format of each row is [x1 y1 x2 y2]) % Note: If you want to change the number of regions you extract features from, % then you need to change the first input_dim in cnn_deploy.prototxt. regions = [ 1 1 100 100; 100 50 400 250; 1 1 512 284; 200 200 230 220 100 100 300 200]; % Convert image from RGB to BGR and single, which caffe requires. im = single(im(:,:,[3 2 1])); % Get the image mean and crop it to the center mean_data = load('ilsvrc_2012_mean.mat'); image_mean = mean_data.image_mean; cnn_input_size = 227; % Input size to the cnn we trained. off = floor((size(image_mean,1) - cnn_input_size)/2)+1; image_mean = image_mean(off:off+cnn_input_size-1, off:off+cnn_input_size-1, :); % Extract each region ims = zeros(cnn_input_size, cnn_input_size, 3, size(regions, 1), 'single'); for i = 1:size(regions, 1) r = regions(i,:); reg = im(r(2):r(4), r(1):r(3), :); % Resize to input CNN size and subtract mean reg = imresize(reg, [cnn_input_size, cnn_input_size], 'bilinear', 'antialiasing', false); reg = reg - image_mean; % Swap dims 1 and 2 to work with caffe ims(:,:,:,i) = permute(reg, [2 1 3]); end % Initialize caffe with our network. % -cnn_deploy.prototxt gives the structure of the network we're using for % extracting features and is how we specify we want fc6 features. % -cnn512.caffemodel is the binary network containing all the learned weights. % -'test' indicates that we're only going to be extracting features and not % training anything init_key = caffe('init', 'cnn_deploy.prototxt', 'cnn512.caffemodel', 'test'); caffe('set_device', 0); % Specify which gpu we want to use. In this case, let's use the first gpu. caffe('set_mode_gpu'); %caffe('set_mode_cpu'); % Use if you want to use a cpu for whatever reason % Run the CNN f = caffe('forward', {ims}); % Convert the features to (num. dims) x (num. regions) feat = single(reshape(f{1}(:), [], size(ims, 4)));
这段代码的作用是使用已经训练好的CNN模型提取图片中指定区域的特征。首先,加载一张图片,然后选取几个随机的区域,并将每个区域缩放到CNN要求的输入尺寸。然后,使用已经训练好的CNN模型对这些区域进行特征提取,并将提取到的特征向量进行reshape操作,以便后续的处理。这段代码使用了Caffe库来实现CNN模型的初始化和特征提取。
% 导入预训练的model opts.modelPath = fullfile('..','models','imagenet-vgg-verydeep-16.mat'); [opts, varargin] = vl_argparse(opts, varargin) ; opts.numFetchThreads = 12 ; opts.lite = false ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.train = struct() ; opts.train.gpus = []; opts.train.batchSize = 8 ; opts.train.numSubBatches = 4 ; opts.train.learningRate = 1e-4 * [ones(1,10), 0.1*ones(1,5)]; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare model % ------------------------------------------------------------------------- net = load(opts.modelPath); % 修改一下这个model net = prepareDINet(net,opts); % ------------------------------------------------------------------------- % Prepare data % ------------------------------------------------------------------------- % 准备数据格式 if exist(opts.imdbPath,'file') imdb = load(opts.imdbPath) ; else imdb = cnn_image_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end imdb.images.set = imdb.images.sets; % Set the class names in the network net.meta.classes.name = imdb.classes.name ; net.meta.classes.description = imdb.classes.name ; % % 求训练集的均值 imageStatsPath = fullfile(opts.expDir, 'imageStats.mat') ; if exist(imageStatsPath) load(imageStatsPath, 'averageImage') ; else averageImage = getImageStats(opts, net.meta, imdb) ; save(imageStatsPath, 'averageImage') ; end % % 用新的均值改变均值 net.meta.normalization.averageImage = averageImage; % ------------------------------------------------------------------------- % Learn % ------------------------------------------------------------------------- % 索引训练集==1 和测试集==3 opts.train.train = find(imdb.images.set==1) ; opts.train.val = find(imdb.images.set==3) ; % 训练 [net, info] = cnn_train_dag(net, imdb, getBatchFn(opts, net.meta), ... 'expDir', opts.expDir, ... opts.train) ;
这段代码是一个深度学习的训练过程,主要包括准备模型、准备数据、训练模型三个步骤。其中,模型使用的是预训练的imagenet-vgg-verydeep-16模型,数据使用的是经过预处理后的imdb数据集,训练过程使用的是cnn_train_dag函数。具体流程如下:
1. 导入预训练的模型,将其存储在net变量中;
2. 使用prepareDINet函数对模型进行修改,以适应当前任务;
3. 准备数据,如果之前已经生成了imdb文件,则直接载入,否则使用cnn_image_setup_data函数生成并保存imdb文件;
4. 设置模型的分类名称和描述;
5. 计算训练集的均值,如果已经计算过,则从文件中读取,否则使用getImageStats函数计算并保存;
6. 使用新的均值修改模型的normalization参数;
7. 确定训练集和测试集的索引;
8. 调用cnn_train_dag函数进行训练,并将训练结果存储在net和info两个变量中。
阅读全文