from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def CalculateAccuracy(y_test,pred_label): nnz = np.shape(y_test)[0] - np.count_nonzero(pred_label - y_test) acc = 100*nnz/float(np.shape(y_test)[0]) return acc clf1 = KNeighborsClassifier(n_neighbors=2) clf2 = RandomForestClassifier(n_estimators = 2,random_state=1) clf3 = GaussianNB() lr = LogisticRegression() clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) f1 = clf1.predict(X) acc1 = CalculateAccuracy(y, f1) print("accuracy from KNN: "+str(acc1) ) f2 = clf2.predict(X) acc2 = CalculateAccuracy(y, f2) print("accuracy from Random Forest: "+str(acc2) ) f3 = clf3.predict(X) acc3 = CalculateAccuracy(y, f3) print("accuracy from Naive Bayes: "+str(acc3) ) f = [f1,f2,f3] f = np.transpose(f) lr.fit(f, y) final = lr.predict(f) acc4 = CalculateAccuracy(y, final) print("accuracy from Stacking Ensemble: "+str(acc4) )解释每行代码

时间: 2024-03-20 20:41:55 浏览: 19
好的,我来为你一行一行地解释这段代码的含义: ```python from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np ``` 这一段代码导入了所需的库和模块,包括了数据集 iris,随机森林分类器、逻辑回归分类器、朴素贝叶斯分类器、KNN分类器和决策树分类器。同时也导入了 NumPy 库,用于数组操作。 ```python iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target ``` 这一段代码加载了 iris 数据集,并将 iris 数据集中的前两个特征作为输入特征 X,将第三个特征作为输出标签 y。 ```python def CalculateAccuracy(y_test, pred_label): nnz = np.shape(y_test)[0] - np.count_nonzero(pred_label - y_test) acc = 100*nnz/float(np.shape(y_test)[0]) return acc ``` 这一段代码定义了一个函数 CalculateAccuracy,用于计算分类器的准确率。其中,y_test 表示真实标签,pred_label 表示预测标签。 ```python clf1 = KNeighborsClassifier(n_neighbors=2) clf2 = RandomForestClassifier(n_estimators=2, random_state=1) clf3 = GaussianNB() lr = LogisticRegression() ``` 这一段代码初始化了三个分类器 clf1、clf2 和 clf3,分别用于 KNN、随机森林和朴素贝叶斯分类。另外还初始化了逻辑回归分类器 lr。 ```python clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) ``` 这一段代码使用训练数据 X 和 y 来训练三个分类器 clf1、clf2 和 clf3。 ```python f1 = clf1.predict(X) acc1 = CalculateAccuracy(y, f1) print("accuracy from KNN: "+str(acc1)) ``` 这一段代码使用训练好的 KNN 分类器 clf1 对训练数据 X 进行预测,并使用 CalculateAccuracy 函数计算预测准确率 acc1。 ```python f2 = clf2.predict(X) acc2 = CalculateAccuracy(y, f2) print("accuracy from Random Forest: "+str(acc2)) ``` 这一段代码使用训练好的随机森林分类器 clf2 对训练数据 X 进行预测,并使用 CalculateAccuracy 函数计算预测准确率 acc2。 ```python f3 = clf3.predict(X) acc3 = CalculateAccuracy(y, f3) print("accuracy from Naive Bayes: "+str(acc3)) ``` 这一段代码使用训练好的朴素贝叶斯分类器 clf3 对训练数据 X 进行预测,并使用 CalculateAccuracy 函数计算预测准确率 acc3。 ```python f = [f1, f2, f3] f = np.transpose(f) lr.fit(f, y) final = lr.predict(f) acc4 = CalculateAccuracy(y, final) print("accuracy from Stacking Ensemble: "+str(acc4)) ``` 这一段代码将三个分类器的预测结果合并为一个矩阵 f,并使用逻辑回归分类器 lr 对矩阵 f 进行训练。最后,使用训练好的模型对矩阵 f 进行预测,并使用 CalculateAccuracy 函数计算预测准确率 acc4,即集成分类器的准确率。

相关推荐

import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示

最新推荐

recommend-type

单片机C语言Proteus仿真实例可演奏的电子琴

单片机C语言Proteus仿真实例可演奏的电子琴提取方式是百度网盘分享地址
recommend-type

电力概预算软件.zip

电力概预算软件
recommend-type

setuptools-64.0.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

爱你老妈(HTML文件)母亲节快乐

母亲节祝福html源码 很简单的代码,随机生成背景
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依