epochs=20 opt = Adam(lr=1e-4,decay=1e-4 / epochs) model = AlexNet.build(width=227, height=227, depth=3, classes=7) model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy']) model.summary()

时间: 2024-01-19 13:03:50 浏览: 114
这段代码是用Keras框架实现了AlexNet模型的构建,用于进行7个类别的图像分类任务。其中,模型的输入尺寸为227x227x3(宽、高、通道数),输出7个类别的概率分布。模型使用了Adam优化器进行训练,学习率为1e-4,衰减率为1e-4 / epochs。训练过程中,使用交叉熵作为损失函数,同时计算分类准确率作为评价指标。模型的结构信息可以通过调用summary()方法查看。
相关问题

Namespace(aa='rand-m9-mstd0.5-inc0,1,2,3,7,8,9,10,11,12,13,14,6', batch_size=64, clip_grad=None, color_jitter=0.4, cooldown_epochs=10, cutmix=0, cutmix_minmax=None, data_path='../OPTIMAL-31-37', data_set='IMNET', decay_epochs=30, decay_rate=0.1, device='cuda', dist_url='env://', distributed=False, drop=0.01, drop_block=None, drop_path=0.1, epochs=240, eval=False, inat_category='name', input_size=224, load_pretrain=False, lr=0.06, lr_noise=None, lr_noise_pct=0.67, lr_noise_std=1.0, min_lr=1e-05, mixup=0, mixup_mode='batch', mixup_prob=1.0, mixup_switch=True, mixup_switch_prob=0.5, model='seresnext50_32x4d', model_ema=True, model_ema_decay=0.99996, model_ema_force_cpu=False, momentum=0.9, no_aug=False, num_workers=10, opt='sgd', opt_betas=None, opt_eps=1e-08, output_dir='../deit-main/checkpoint/', patience_epochs=10, pin_mem=True, pretrain_address='', print_epoch=2, recount=1, remode='pixel', repeated_aug=False, reprob=0.25, resplit=False, resume='', scale=(0.2, 1.0), sched='cosine', seed=0, smoothing=0.1, start_epoch=0, train_interpolation='bicubic', use_prefetcher=False, warmup_epochs=5, warmup_lr=1e-06, weight_decay=0.0001, world_size=1)给出这段参数的详细解释

这段参数是一个Python命名空间(Namespace),其中包含了用于训练机器学习模型的一系列参数。具体解释如下: - aa: 随机种子相关参数,用于数据增强。 - batch_size: 每个批次的样本数量。 - clip_grad: 梯度裁剪的阈值。 - color_jitter: 颜色抖动增强的强度。 - cooldown_epochs: 学习率衰减后,在进行下一次衰减之前等待的 epochs 数量。 - cutmix: CutMix 数据增强的系数。 - cutmix_minmax: CutMix 增强中随机裁剪的最小和最大比例。 - data_path: 存储数据集的路径。 - data_set: 数据集名称。 - decay_epochs: 学习率衰减的 epochs 数量。 - decay_rate: 学习率衰减的比例。 - device: 训练设备,例如 CPU 或 GPU。 - dist_url: 分布式训练的 URL。 - distributed: 是否进行分布式训练。 - drop: Dropout 正则化的比例。 - drop_block: DropBlock 正则化的比例。 - drop_path: DropPath 正则化的比例。 - epochs: 训练 epochs 数量。 - eval: 是否在验证集上进行评估。 - inat_category: iNaturalist 数据集的分类方式。 - input_size: 输入图像的大小。 - load_pretrain: 是否加载预训练模型。 - lr: 初始学习率。 - lr_noise: 学习率噪声的系数。 - lr_noise_pct: 学习率噪声的占比。 - lr_noise_std: 学习率噪声的标准差。 - min_lr: 最小学习率。 - mixup: Mixup 数据增强的系数。 - mixup_mode: Mixup 增强的方式。 - mixup_prob: Mixup 增强的概率。 - mixup_switch: 是否在 Mixup 增强中打开随机开关。 - mixup_switch_prob: 随机开关打开的概率。 - model: 选择的模型名称。 - model_ema: 是否使用模型指数滑动平均(EMA)。 - model_ema_decay: 模型 EMA 的衰减率。 - model_ema_force_cpu: 是否强制在 CPU 上使用模型 EMA。 - momentum: SGD 优化器的动量。 - no_aug: 是否禁用数据增强。 - num_workers: 数据加载器的工作线程数量。 - opt: 优化器名称。 - opt_betas: Adam 优化器的 beta 参数。 - opt_eps: Adam 优化器的 epsilon 参数。 - output_dir: 模型检查点的输出路径。 - patience_epochs: 在验证集上等待的 epochs 数量,用于提高验证集性能。 - pin_mem: 是否使用 pinned memory 进行数据加载。 - pretrain_address: 预训练模型的地址。 - print_epoch: 每多少个 epochs 打印一次训练信息。 - recount: 数据增强的重复次数。 - remode: 随机增强的方式。 - repeated_aug: 是否对同一图像进行多次数据增强。 - reprob: 随机擦除的比例。 - resplit: 是否对数据集进行重新划分。 - resume: 恢复训练的检查点路径。 - scale: 随机缩放的比例范围。 - sched: 学习率调度器名称。 - seed: 随机数种子。 - smoothing: Label Smoothing 正则化的比例。 - start_epoch: 起始 epoch 数量。 - train_interpolation: 训练集插值方式。 - use_prefetcher: 是否使用数据预加载。 - warmup_epochs: 学习率预热的 epochs 数量。 - warmup_lr: 预热学习率。 - weight_decay: 权重衰减的比例。 - world_size: 分布式训练的进程数量。

S_inputs = Input(shape=(11,), dtype='int32') #(None,600) O_seq = Embedding(5000, 128)(S_inputs) #(None,600,128) cnn1 = Conv1D(256, 3, padding='same', strides=1, activation='relu')(O_seq) cnn1 = MaxPooling1D(pool_size=3)(cnn1) cnn = cnn1 O_seq = GlobalAveragePooling1D()(cnn) #(None,128) print(O_seq.shape) O_seq = Dropout(0.9)(O_seq) outputs = Dense(1, activation='tanh',kernel_regularizer = tf.keras.regularizers.L2())(O_seq) model = Model(inputs=S_inputs, outputs=outputs) opt = SGD(learning_rate=0.1, decay=0.00001) loss = 'categorical_crossentropy' model.compile(loss=loss, optimizer=opt, metrics=['categorical_accuracy']) print('Train...') h = model.fit(Xtrain, ytrain,batch_size=batch_size,validation_split = 0.2,epochs=5) plt.plot(h.history["loss"], label="train_loss") plt.plot(h.history["val_loss"], label="test_loss") plt.legend() plt.show()给这段代码加注释

# 导入模块 from tensorflow.keras.layers import Input, Embedding, Conv1D, MaxPooling1D, GlobalAveragePooling1D, Dropout, Dense from tensorflow.keras.models import Model from tensorflow.keras.optimizers import SGD import tensorflow as tf import matplotlib.pyplot as plt # 定义输入层 S_inputs = Input(shape=(11,), dtype='int32') #(None,600) # 创建嵌入层 O_seq = Embedding(5000, 128)(S_inputs) #(None,600,128) # 创建卷积层并进行池化操作 cnn1 = Conv1D(256, 3, padding='same', strides=1, activation='relu')(O_seq) cnn1 = MaxPooling1D(pool_size=3)(cnn1) cnn = cnn1 # 全局平均池化 O_seq = GlobalAveragePooling1D()(cnn) #(None,128) # 添加 dropout 层 O_seq = Dropout(0.9)(O_seq) # 创建输出层 outputs = Dense(1, activation='tanh',kernel_regularizer = tf.keras.regularizers.L2())(O_seq) # 定义模型并进行编译 model = Model(inputs=S_inputs, outputs=outputs) opt = SGD(learning_rate=0.1, decay=0.00001) loss = 'categorical_crossentropy' model.compile(loss=loss, optimizer=opt, metrics=['categorical_accuracy']) # 输出模型结构 model.summary() # 训练模型 print('Train...') h = model.fit(Xtrain, ytrain,batch_size=batch_size,validation_split = 0.2,epochs=5) # 绘制损失函数曲线 plt.plot(h.history["loss"], label="train_loss") plt.plot(h.history["val_loss"], label="test_loss") plt.legend() plt.show()
阅读全文

相关推荐

Namespace(weights='yolo7.pt', cfg='cfg/training/yolov7.yaml', data='data/DOTA_split.yaml', hyp='data/hyp.scratch.p5.yaml', epochs=10, batch_size=4, img_size=[640, 640], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='', multi_scale=False, single_cls=False, ada m=False, sync_bn=False, local_rank=-1, workers=8, project='runs/train', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', freeze=[0], v5_metric=False, world_size=1, global_rank=-1, save_dir='runs\\train\\exp2', total_batch_size=4) tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.3, cls_pw=1.0, obj=0.7, obj_pw= 1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.2, scale=0.9, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.15, copy_paste=0.0, paste_in=0.15, loss_ota=1 Traceback (most recent call last): File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\train.py", line 618, in <module> train(hyp, opt, device, tb_writer) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\train.py", line 64, in train data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 85, in __init__ self.determine_encoding() File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 124, in determine_encoding self.update_raw() File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 178, in update_raw data = self.stream.read(size) UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 233: illegal multibyte sequence

最新推荐

recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于springboot的简历系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

“招聘智能化”:线上招聘问答系统的功能开发

互联网技术经过数十年的发展,已经积累了深厚的理论基础,并在实际应用中无处不在,极大地消除了地理信息的障碍,实现了全球即时通讯,极大地便利了人们的日常生活。因此,利用计算机技术设计的线上招聘问答系统,不仅在管理上更加系统化和操作性强,更重要的是在数据保存和使用上能够节省大量时间,使得系统变得非常高效和实用。 线上招聘问答系统采用MySQL作为数据管理工具,Java作为编码语言,以及SSM框架作为开发架构。系统主要实现了简历管理、论坛帖子管理、职位招聘管理、职位招聘留言管理、招聘岗位管理、所在行业管理以及求职意向管理等功能。 该系统的设计不仅方便了操作人员,而且合理性高,能有效避免误操作,确保数据在录入时就符合设计要求,从而最大限度地减少源头性输入错误,使数据更加可控和可靠,将出错率降至最低。
recommend-type

simulink实现标准IEEE33配电网系统,50HZ,将各节点数据统计起来输出到工作区,再matlab中跑出某时刻节点电压分布,适合用于观察某时刻节点电压变化情况 #特别是当用于接入双馈风机时

simulink实现标准IEEE33配电网系统,50HZ,将各节点数据统计起来输出到工作区,再matlab中跑出某时刻节点电压分布,适合用于观察某时刻节点电压变化情况。 #特别是当用于接入双馈风机时,用powergui无法进行潮流计算,通过此方法能过很好的解决此问题。 有参考文献。
recommend-type

给袋式真空包装机UG10全套技术资料100%好用.zip

给袋式真空包装机UG10全套技术资料100%好用.zip
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"