epochs=20 opt = Adam(lr=1e-4,decay=1e-4 / epochs) model = AlexNet.build(width=227, height=227, depth=3, classes=7) model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy']) model.summary()
时间: 2024-01-19 13:03:50 浏览: 114
这段代码是用Keras框架实现了AlexNet模型的构建,用于进行7个类别的图像分类任务。其中,模型的输入尺寸为227x227x3(宽、高、通道数),输出7个类别的概率分布。模型使用了Adam优化器进行训练,学习率为1e-4,衰减率为1e-4 / epochs。训练过程中,使用交叉熵作为损失函数,同时计算分类准确率作为评价指标。模型的结构信息可以通过调用summary()方法查看。
相关问题
Namespace(aa='rand-m9-mstd0.5-inc0,1,2,3,7,8,9,10,11,12,13,14,6', batch_size=64, clip_grad=None, color_jitter=0.4, cooldown_epochs=10, cutmix=0, cutmix_minmax=None, data_path='../OPTIMAL-31-37', data_set='IMNET', decay_epochs=30, decay_rate=0.1, device='cuda', dist_url='env://', distributed=False, drop=0.01, drop_block=None, drop_path=0.1, epochs=240, eval=False, inat_category='name', input_size=224, load_pretrain=False, lr=0.06, lr_noise=None, lr_noise_pct=0.67, lr_noise_std=1.0, min_lr=1e-05, mixup=0, mixup_mode='batch', mixup_prob=1.0, mixup_switch=True, mixup_switch_prob=0.5, model='seresnext50_32x4d', model_ema=True, model_ema_decay=0.99996, model_ema_force_cpu=False, momentum=0.9, no_aug=False, num_workers=10, opt='sgd', opt_betas=None, opt_eps=1e-08, output_dir='../deit-main/checkpoint/', patience_epochs=10, pin_mem=True, pretrain_address='', print_epoch=2, recount=1, remode='pixel', repeated_aug=False, reprob=0.25, resplit=False, resume='', scale=(0.2, 1.0), sched='cosine', seed=0, smoothing=0.1, start_epoch=0, train_interpolation='bicubic', use_prefetcher=False, warmup_epochs=5, warmup_lr=1e-06, weight_decay=0.0001, world_size=1)给出这段参数的详细解释
这段参数是一个Python命名空间(Namespace),其中包含了用于训练机器学习模型的一系列参数。具体解释如下:
- aa: 随机种子相关参数,用于数据增强。
- batch_size: 每个批次的样本数量。
- clip_grad: 梯度裁剪的阈值。
- color_jitter: 颜色抖动增强的强度。
- cooldown_epochs: 学习率衰减后,在进行下一次衰减之前等待的 epochs 数量。
- cutmix: CutMix 数据增强的系数。
- cutmix_minmax: CutMix 增强中随机裁剪的最小和最大比例。
- data_path: 存储数据集的路径。
- data_set: 数据集名称。
- decay_epochs: 学习率衰减的 epochs 数量。
- decay_rate: 学习率衰减的比例。
- device: 训练设备,例如 CPU 或 GPU。
- dist_url: 分布式训练的 URL。
- distributed: 是否进行分布式训练。
- drop: Dropout 正则化的比例。
- drop_block: DropBlock 正则化的比例。
- drop_path: DropPath 正则化的比例。
- epochs: 训练 epochs 数量。
- eval: 是否在验证集上进行评估。
- inat_category: iNaturalist 数据集的分类方式。
- input_size: 输入图像的大小。
- load_pretrain: 是否加载预训练模型。
- lr: 初始学习率。
- lr_noise: 学习率噪声的系数。
- lr_noise_pct: 学习率噪声的占比。
- lr_noise_std: 学习率噪声的标准差。
- min_lr: 最小学习率。
- mixup: Mixup 数据增强的系数。
- mixup_mode: Mixup 增强的方式。
- mixup_prob: Mixup 增强的概率。
- mixup_switch: 是否在 Mixup 增强中打开随机开关。
- mixup_switch_prob: 随机开关打开的概率。
- model: 选择的模型名称。
- model_ema: 是否使用模型指数滑动平均(EMA)。
- model_ema_decay: 模型 EMA 的衰减率。
- model_ema_force_cpu: 是否强制在 CPU 上使用模型 EMA。
- momentum: SGD 优化器的动量。
- no_aug: 是否禁用数据增强。
- num_workers: 数据加载器的工作线程数量。
- opt: 优化器名称。
- opt_betas: Adam 优化器的 beta 参数。
- opt_eps: Adam 优化器的 epsilon 参数。
- output_dir: 模型检查点的输出路径。
- patience_epochs: 在验证集上等待的 epochs 数量,用于提高验证集性能。
- pin_mem: 是否使用 pinned memory 进行数据加载。
- pretrain_address: 预训练模型的地址。
- print_epoch: 每多少个 epochs 打印一次训练信息。
- recount: 数据增强的重复次数。
- remode: 随机增强的方式。
- repeated_aug: 是否对同一图像进行多次数据增强。
- reprob: 随机擦除的比例。
- resplit: 是否对数据集进行重新划分。
- resume: 恢复训练的检查点路径。
- scale: 随机缩放的比例范围。
- sched: 学习率调度器名称。
- seed: 随机数种子。
- smoothing: Label Smoothing 正则化的比例。
- start_epoch: 起始 epoch 数量。
- train_interpolation: 训练集插值方式。
- use_prefetcher: 是否使用数据预加载。
- warmup_epochs: 学习率预热的 epochs 数量。
- warmup_lr: 预热学习率。
- weight_decay: 权重衰减的比例。
- world_size: 分布式训练的进程数量。
S_inputs = Input(shape=(11,), dtype='int32') #(None,600) O_seq = Embedding(5000, 128)(S_inputs) #(None,600,128) cnn1 = Conv1D(256, 3, padding='same', strides=1, activation='relu')(O_seq) cnn1 = MaxPooling1D(pool_size=3)(cnn1) cnn = cnn1 O_seq = GlobalAveragePooling1D()(cnn) #(None,128) print(O_seq.shape) O_seq = Dropout(0.9)(O_seq) outputs = Dense(1, activation='tanh',kernel_regularizer = tf.keras.regularizers.L2())(O_seq) model = Model(inputs=S_inputs, outputs=outputs) opt = SGD(learning_rate=0.1, decay=0.00001) loss = 'categorical_crossentropy' model.compile(loss=loss, optimizer=opt, metrics=['categorical_accuracy']) print('Train...') h = model.fit(Xtrain, ytrain,batch_size=batch_size,validation_split = 0.2,epochs=5) plt.plot(h.history["loss"], label="train_loss") plt.plot(h.history["val_loss"], label="test_loss") plt.legend() plt.show()给这段代码加注释
# 导入模块
from tensorflow.keras.layers import Input, Embedding, Conv1D, MaxPooling1D, GlobalAveragePooling1D, Dropout, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import SGD
import tensorflow as tf
import matplotlib.pyplot as plt
# 定义输入层
S_inputs = Input(shape=(11,), dtype='int32') #(None,600)
# 创建嵌入层
O_seq = Embedding(5000, 128)(S_inputs) #(None,600,128)
# 创建卷积层并进行池化操作
cnn1 = Conv1D(256, 3, padding='same', strides=1, activation='relu')(O_seq)
cnn1 = MaxPooling1D(pool_size=3)(cnn1)
cnn = cnn1
# 全局平均池化
O_seq = GlobalAveragePooling1D()(cnn) #(None,128)
# 添加 dropout 层
O_seq = Dropout(0.9)(O_seq)
# 创建输出层
outputs = Dense(1, activation='tanh',kernel_regularizer = tf.keras.regularizers.L2())(O_seq)
# 定义模型并进行编译
model = Model(inputs=S_inputs, outputs=outputs)
opt = SGD(learning_rate=0.1, decay=0.00001)
loss = 'categorical_crossentropy'
model.compile(loss=loss, optimizer=opt, metrics=['categorical_accuracy'])
# 输出模型结构
model.summary()
# 训练模型
print('Train...')
h = model.fit(Xtrain, ytrain,batch_size=batch_size,validation_split = 0.2,epochs=5)
# 绘制损失函数曲线
plt.plot(h.history["loss"], label="train_loss")
plt.plot(h.history["val_loss"], label="test_loss")
plt.legend()
plt.show()
阅读全文