yolov7train.py详解

时间: 2023-09-23 17:07:12 浏览: 110
yolov7train.py 是使用 YOLOv7 算法进行目标检测的训练脚本。下面对 yolov7train.py 的主要代码进行简单的解释: 1. 导入相关库 ```python import argparse import yaml import time import torch from torch.utils.data import DataLoader from torchvision import datasets from models.yolov7 import Model from utils.datasets import ImageFolder from utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer, set_logging) from utils.torch_utils import ( select_device, time_synchronized, load_classifier, model_info) ``` 这里导入了 argparse 用于解析命令行参数,yaml 用于解析配置文件,time 用于记录时间,torch 用于神经网络训练,DataLoader 用于读取数据集,datasets 和 ImageFolder 用于加载数据集,Model 用于定义 YOLOv7 模型,各种工具函数用于辅助训练。 2. 定义命令行参数 ```python parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default='data.yaml', help='dataset.yaml path') parser.add_argument('--hyp', type=str, default='hyp.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const='yolov7.pt', default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') opt = parser.parse_args() ``` 这里定义了许多命令行参数,包括数据集路径、超参数路径、训练轮数、批量大小、图片大小、是否使用矩形训练、是否从最近的检查点恢复训练、是否只保存最终的检查点、是否只测试最终的模型、是否进行超参数进化、gsutil 存储桶等。 3. 加载数据集 ```python with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) train_path = data_dict['train'] test_path = data_dict['test'] num_classes = data_dict['nc'] names = data_dict['names'] train_dataset = ImageFolder(train_path, img_size=opt.img_size[0], rect=opt.rect) test_dataset = ImageFolder(test_path, img_size=opt.img_size[1], rect=True) batch_size = opt.batch_size train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True, collate_fn=train_dataset.collate_fn) test_dataloader = DataLoader(test_dataset, batch_size=batch_size * 2, num_workers=8, pin_memory=True, collate_fn=test_dataset.collate_fn) ``` 这里读取了数据集的配置文件,包括训练集、测试集、类别数和类别名称等信息。然后使用 ImageFolder 加载数据集,设置图片大小和是否使用矩形训练。最后使用 DataLoader 加载数据集,并设置批量大小、是否 shuffle、是否使用 pin_memory 等参数。 4. 定义 YOLOv7 模型 ```python model = Model(opt.hyp, num_classes, opt.img_size) model.nc = num_classes device = select_device(opt.device, batch_size=batch_size) model.to(device).train() criterion = model.loss optimizer = torch.optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay']) scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=1, T_mult=2) start_epoch = 0 best_fitness = 0.0 ``` 这里使用 Model 类定义了 YOLOv7 模型,并将其放到指定设备上进行训练。使用交叉熵损失函数作为模型的损失函数,使用 SGD 优化器进行训练,并使用余弦退火学习率调整策略。定义了起始轮数、最佳精度等变量。 5. 开始训练 ```python for epoch in range(start_epoch, opt.epochs): model.train() mloss = torch.zeros(4).to(device) # mean losses for i, (imgs, targets, paths, _) in enumerate(train_dataloader): ni = i + len(train_dataloader) * epoch # number integrated batches (since train start) imgs = imgs.to(device) targets = targets.to(device) loss, _, _ = model(imgs, targets) loss.backward() optimizer.step() optimizer.zero_grad() mloss = (mloss * i + loss.detach().cpu()) / (i + 1) # update mean losses # Print batch results if ni % 20 == 0: print(f'Epoch {epoch}/{opt.epochs - 1}, Batch {i}/{len(train_dataloader) - 1}, lr={optimizer.param_groups[0]["lr"]:.6f}, loss={mloss[0]:.4f}') # Update scheduler scheduler.step() # Update Best fitness with torch.no_grad(): fitness = model_fitness(model) if fitness > best_fitness: best_fitness = fitness # Save checkpoint if (not opt.nosave) or (epoch == opt.epochs - 1): ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() } torch.save(ckpt, f'checkpoints/yolov7_epoch{epoch}.pt') # Test if not opt.notest: t = time_synchronized() model.eval() for j, (imgs, targets, paths, shapes) in enumerate(test_dataloader): if j == 0: pred = model(imgs.to(device)) pred = non_max_suppression(pred, conf_thres=0.001, iou_thres=0.6) else: break t1 = time_synchronized() if isinstance(pred, int) or isinstance(pred, tuple): print(f'Epoch {epoch}/{opt.epochs - 1}, test_loss={mloss[0]:.4f}, test_mAP={0.0}') else: pred = pred[0].cpu() iou_thres = 0.5 niou = [iou_thres] * num_classes ap, p, r = ap_per_class(pred, targets, shapes, iou_thres=niou) mp, mr, map50, f1, _, _ = stats(ap, p, r, gt=targets) print(f'Epoch {epoch}/{opt.epochs - 1}, test_loss={mloss[0]:.4f}, test_mAP={map50:.2f} ({mr*100:.1f}/{mp*100:.1f})') # Plot images if epoch == 0 and j == 0: for i, det in enumerate(pred): # detections per image img = cv2.imread(paths[i]) # BGR img = plot_results(img, det, class_names=names) cv2.imwrite(f'runs/test{i}.jpg', img) if i == 3: break ``` 这里进行了多个 epoch 的训练。在每个 epoch 中,对于每个批量的数据,先将数据移动到指定设备上,然后计算模型的损失函数,并进行反向传播和梯度下降。在每个 epoch 结束时,更新学习率调整策略和最佳精度,保存当前的检查点。如果 opt.notest 为 False,则进行测试,并输出测试结果。最后,如果是第一个 epoch,则绘制部分图像用于可视化。

相关推荐

最新推荐

recommend-type

lxml-5.0.1-cp37-cp37m-win32.whl

lxml 是一个用于 Python 的库,它提供了高效的 XML 和 HTML 解析以及搜索功能。它是基于 libxml2 和 libxslt 这两个强大的 C 语言库构建的,因此相比纯 Python 实现的解析器(如 xml.etree.ElementTree),lxml 在速度和功能上都更为强大。 主要特性 快速的解析和序列化:由于底层是 C 实现的,lxml 在解析和序列化 XML/HTML 文档时非常快速。 XPath 和 CSS 选择器:支持 XPath 和 CSS 选择器,这使得在文档中查找特定元素变得简单而强大。 清理和转换 HTML:lxml 提供了强大的工具来清理和转换不规范的 HTML,比如自动修正标签和属性。 ETree API:提供了类似于 ElementTree 的 API,但更加完善和强大。 命名空间支持:相比 ElementTree,lxml 对 XML 命名空间提供了更好的支持。
recommend-type

slim-0.5.8-py3-none-any.whl

whl软件包,直接pip install安装即可
recommend-type

【赠】新营销4.0:新营销,云时代(PDF).pdf

【赠】新营销4.0:新营销,云时代(PDF)
recommend-type

codsys的FileOpenSave文件的读取与保存

里面有网盘资料!!!!!有例程,不用担心实现不了。 保证利用codesys的FileOpenSave功能块进行读取和下载文件。 目的:使用FileOpensave进行操作,保证项目的可执行性。
recommend-type

通用档案管理软件 open-gams C# WINFORM 源码

通用档案管理软件 open-gams C# WINFORM 源码
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。