library(survival) data(lung)# 对数据进行预处理 lung$status <- ifelse(lung$status == 1, 0, 1) lung$ph.karno <- ifelse(is.na(lung$ph.karno), median(lung$ph.karno, na.rm = TRUE), lung$ph.karno) lung$pat.karno <- ifelse(is.na(lung$pat.karno), median(lung$pat.karno, na.rm = TRUE), lung$pat.karno) lung$age <- ifelse(is.na(lung$age), median(lung$age, na.rm = TRUE), lung$age)# 将数据集划分 set.seed(123) train_index <- sample(1:nrow(lung), size = round(nrow(lung) * 0.7), replace = FALSE) train_data <- lung[train_index, ] test_data <- lung[-train_index, ]# 构建模型 fit <- glm(status ~., data = train_data, family = binomial(link = 'logit'))# 预测测试集 prob <- predict(fit, newdata = test_data, type = "response") # 计算c-index concord <- 0 discord <- 0 for(i in 1:(nrow(test_data) - 1)) { for(j in (i + 1):nrow(test_data)){ if(test_data$status[i] == test_data$status[j]){ next } if(test_data$status[i] < test_data$status[j]){ if(prob[i] > prob[j]){ concord <- concord + 1 }else if(prob[i] < prob[j]){ discord <- discord + 1 } }else{ if(prob[i] > prob[j]){ discord <- discord + 1 }else if(prob[i] < prob[j]){ concord <- concord + 1 } } } } c_index <- (concord + 0.5 * discord) / (concord + discord) # 打印c-index cat("C-index:", c_index, "\n")为什么报错
时间: 2024-04-27 21:20:52 浏览: 161
python实现基于scikit-survival工具包进行生存预测分析项目源码.zip
5星 · 资源好评率100%
我没有看到具体的报错信息,不过根据代码可能存在以下问题:
1. 缺少对survival包的加载,需要在代码开头加上`library(survival)`。
2. 在计算c-index时,可能会出现除以0的情况,因为discord的值可能为0。可以在计算前先判断discord是否为0,若为0则直接将c_index赋为1。
3. 在数据预处理时,可能会出现NA值的情况。可以使用`sum(is.na(lung))`查看数据中是否有缺失值,如果有,则需要进行相应的处理,比如使用中位数进行填充。
如果还有其他问题,可以提供具体的报错信息或者代码截图以供参考。
阅读全文