BSC 点云描述c++代码实现
时间: 2024-02-07 14:03:12 浏览: 218
BSC(Ball Scale Space)算法是一种点云简化的算法,其基本思想是将点云数据分解成不同的球形层次结构,通过计算每个球的半径和球内点的数量来判断哪些球体应该被保留,哪些应该被过滤掉。以下是BSC点云描述的C++代码实现:
```c++
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/surface/mls.h>
#include <pcl/surface/gp3.h>
#include <pcl/surface/bilateral_upsampling.h>
#include <pcl/surface/vtk_smoothing/vtk_utils.h>
using namespace std;
using namespace pcl;
int main(int argc, char** argv)
{
PointCloud<PointXYZ>::Ptr cloud(new PointCloud<PointXYZ>());
PointCloud<PointXYZ>::Ptr cloud_downsampled(new PointCloud<PointXYZ>());
PointCloud<PointNormal>::Ptr cloud_smoothed(new PointCloud<PointNormal>());
PointCloud<PointNormal>::Ptr cloud_filtered(new PointCloud<PointNormal>());
PointCloud<PointXYZ>::Ptr cloud_upsampled(new PointCloud<PointXYZ>());
PolygonMesh triangles;
// 读取点云数据
if (io::loadPCDFile<PointXYZ>("input_cloud.pcd", *cloud) == -1)
{
PCL_ERROR("Failed to read input point cloud file\n");
return (-1);
}
// 对点云进行下采样
VoxelGrid<PointXYZ> vox_grid;
vox_grid.setLeafSize(0.01f, 0.01f, 0.01f);
vox_grid.setInputCloud(cloud);
vox_grid.filter(*cloud_downsampled);
// 计算法向量
NormalEstimation<PointXYZ, PointNormal> ne;
ne.setInputCloud(cloud_downsampled);
search::KdTree<PointXYZ>::Ptr tree(new search::KdTree<PointXYZ>());
ne.setSearchMethod(tree);
ne.setRadiusSearch(0.03);
ne.compute(*cloud_smoothed);
// 对法向量进行滤波
BilateralUpsampling<PointNormal, PointNormal> bu;
bu.setInputCloud(cloud_smoothed);
bu.setSigmaColor(1.0);
bu.setSigmaDepth(1.0);
bu.process(*cloud_filtered);
// 对点云进行上采样
MovingLeastSquares<PointNormal, PointNormal> mls;
mls.setInputCloud(cloud_filtered);
mls.setSearchRadius(0.03);
mls.setPolynomialFit(true);
mls.setPolynomialOrder(2);
mls.setUpsamplingMethod(MovingLeastSquares<PointNormal, PointNormal>::SAMPLE_LOCAL_PLANE);
mls.setUpsamplingRadius(0.03);
mls.setUpsamplingStepSize(0.02);
mls.setPointDensity(60000.0);
mls.process(*cloud_upsampled);
// 三角化
GreedyProjectionTriangulation<PointXYZ> gp3;
gp3.setInputCloud(cloud_upsampled);
gp3.setSearchRadius(0.025);
gp3.setMu(2.5);
gp3.setMaximumNearestNeighbors(100);
gp3.setMaximumSurfaceAngle(M_PI / 2);
gp3.setMinimumAngle(M_PI / 18);
gp3.setMaximumAngle(2 * M_PI / 3);
gp3.setNormalConsistency(false);
gp3.setConsistentVertexOrdering(true);
gp3.reconstruct(triangles);
// 可视化结果
visualization::PCLVisualizer viewer("BSC Point Cloud Simplification");
viewer.setBackgroundColor(0.0, 0.0, 0.0);
viewer.addPolygonMesh(triangles, "mesh");
viewer.spin();
return (0);
}
```
注意:这里的代码仅是一个简单的示例,实际使用时需要根据具体情况进行修改。
阅读全文