使用如下分箱数据绘制直方图, data1 = pd.cut( top250.movie_duration, bins = [0,80,120,140,180,1000], labels = ['偏短','标准','正常','偏长','超长'] ).value_counts()
时间: 2023-10-23 07:35:50 浏览: 128
好的,我会用Matplotlib库来绘制直方图,代码如下:
```python
import matplotlib.pyplot as plt
import pandas as pd
# 构造数据
data1 = pd.cut(top250.movie_duration, bins=[0, 80, 120, 140, 180, 1000], labels=['偏短', '标准', '正常', '偏长', '超长']).value_counts()
# 绘制直方图
plt.bar(data1.index, data1.values)
# 设置标题和坐标轴标签
plt.title('电影时长分布直方图')
plt.xlabel('时长')
plt.ylabel('电影数量')
# 设置x轴刻度
plt.xticks(data1.index, data1.index.values)
# 显示图形
plt.show()
```
这段代码会根据分箱数据绘制直方图,x轴刻度为分箱的标题。你可以根据需要调整代码中的参数和设置来满足你的要求。
相关问题
使用如下分箱数据绘制直方图,且x轴刻度为分箱的标题 data1 = pd.cut( top250.movie_duration, bins = [0,80,120,140,180,1000], labels = ['偏短','标准','正常','偏长','超长'] ).value_counts()
好的,你的要求我已经理解了。关于你的问题,我可以使用Matplotlib库来绘制直方图。代码如下:
```python
import matplotlib.pyplot as plt
import pandas as pd
# 构造数据
data1 = pd.cut(top250.movie_duration, bins=[0, 80, 120, 140, 180, 1000], labels=['偏短', '标准', '正常', '偏长', '超长']).value_counts()
# 绘制直方图
plt.bar(data1.index, data1.values)
# 设置标题和坐标轴标签
plt.title('电影时长分布直方图')
plt.xlabel('时长')
plt.ylabel('电影数量')
# 设置x轴刻度
plt.xticks(data1.index, data1.index.values)
# 显示图形
plt.show()
```
这段代码会根据分箱数据绘制直方图,x轴刻度为分箱的标题。你可以根据需要调整代码中的参数和设置来满足你的要求。
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # 读取训练集和测试集数据 train_data = pd.read_csv(r'C:\ADULT\Titanic\train.csv') test_data = pd.read_csv(r'C:\ADULT\Titanic\test.csv') # 统计训练集和测试集缺失值数目 print(train_data.isnull().sum()) print(test_data.isnull().sum()) # 处理 Age, Fare 和 Embarked 缺失值 most_lists = ['Age', 'Fare', 'Embarked'] for col in most_lists: train_data[col] = train_data[col].fillna(train_data[col].mode()[0]) test_data[col] = test_data[col].fillna(test_data[col].mode()[0]) # 拆分 X, Y 数据并将分类变量 one-hot 编码 y_train_data = train_data['Survived'] features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Embarked'] X_train_data = pd.get_dummies(train_data[features]) X_test_data = pd.get_dummies(test_data[features]) # 合并训练集 Y 和 X 数据,并创建乘客信息分类变量 train_data_selected = pd.concat([y_train_data, X_train_data], axis=1) print(train_data_selected) cate_features = ['Pclass', 'SibSp', 'Parch', 'Sex', 'Embarked', 'Age_category', 'Fare_category'] train_data['Age_category'] = pd.cut(train_data.Fare, bins=range(0, 100, 10)).astype(str) train_data['Fare_category'] = pd.cut(train_data.Fare, bins=list(range(-20, 110, 20)) + [800]).astype(str) print(train_data) # 统计各分类变量的分布并作出可视化呈现 plt.figure(figsize=(18, 16)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for i, cate_feature in enumerate(cate_features): plt.subplot(7, 2, 2 * i + 1) sns.histplot(x=cate_feature, data=train_data, stat="density") plt.xlabel(cate_feature) plt.ylabel('Density') plt.subplot(7, 2, 2 * i + 2) sns.lineplot(x=cate_feature, y='Survived', data=train_data) plt.xlabel(cate_feature) plt.ylabel('Survived') plt.show() # 绘制点状的相关系数热图 plt.figure(figsize=(12, 8)) sns.heatmap(train_data_selected.corr(), vmin=-1, vmax=1, annot=True) plt.show() sourceRow = 891 output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.head() # 保存结果 output.to_csv('gender_submission.csv', index=False) print(output) train_X, test_X, train_y, test_y = train_test_split(X_train_data, y_train_data, train_size=0.8, random_state=42) print("随机森林分类结果") y_pred_train1 = train_data.predict(train_X) y_pred_test1 = train_data.predict(test_X) accuracy_train1 = accuracy_score(train_y, y_pred_train1) accuracy_test1 = accuracy_score(test_y, y_pred_test1) print("训练集——随机森林分类器准确率为:", accuracy_train1) print("测试集——随机森林分类器准确率为:", accuracy_train1)
在你的代码中,你正在尝试从 `train_data` 对象上调用一个名为 "predict" 的方法,而 `train_data` 实际上是一个 DataFrame 对象,该对象并没有 "predict" 方法。你应该使用你之前定义的随机森林分类器对象 `RandomForestClassifier` 来进行预测。请将以下代码:
```
y_pred_train1 = train_data.predict(train_X)
y_pred_test1 = train_data.predict(test_X)
```
更改为:
```
# 定义随机森林分类器对象
rfc = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=42)
# 在训练数据上拟合分类器
rfc.fit(train_X, train_y)
# 在训练集和测试集上进行预测
y_pred_train1 = rfc.predict(train_X)
y_pred_test1 = rfc.predict(test_X)
```
这将使用你之前定义的随机森林分类器对象 `rfc` 来进行预测。同时,你需要使用 `rfc.fit(train_X, train_y)` 在训练数据上拟合分类器,然后使用 `rfc.predict(train_X)` 和 `rfc.predict(test_X)` 在训练集和测试集上进行预测。
阅读全文