pytorch tensor按维度复制

时间: 2023-04-26 15:06:07 浏览: 174
可以使用PyTorch中的repeat函数来按维度复制tensor。repeat函数接受一个参数,表示每个维度需要复制的次数,可以传入一个元组来指定每个维度的复制次数。例如,对于一个形状为(3,4)的tensor,可以使用以下代码按行复制两次: ```python import torch x = torch.randn(3, 4) y = x.repeat(2, 1) print(y.shape) # 输出(6, 4) ``` 这里的(2,1)表示第一维复制2次,第二维复制1次。如果要按列复制两次,可以使用(1,2)作为参数: ```python z = x.repeat(1, 2) print(z.shape) # 输出(3, 8) ``` 这里的(1,2)表示第一维复制1次,第二维复制2次。
相关问题

pytorch tensor怎么输出维度

### 回答1: 在PyTorch中,我们可以通过调用tensor的shape属性来输出其维度。 例如,假设我们有一个名为x的张量。 要输出它的维度,我们只需调用x.shape并打印输出即可。例如: import torch x = torch.tensor([[1, 2, 3], [4, 5, 6]]) print(x.shape) 这将输出:(2, 3) 这表示张量x有两个维度(2行和3列)。通过打印张量的形状,我们可以方便地了解它的大小和维度,并在编写代码时做出正确的决策。 ### 回答2: 在 PyTorch 中,有多种方法可以输出 tensor 的维度。下面列举了几种常用的方法。 1. 通过 shape 属性 在 PyTorch 中,tensor 的维度可以通过 shape 属性来获取。shape 属性是一个元组,表示 tensor 的各个维度大小。例如: ```python import torch x = torch.randn(2, 3, 4) print(x.shape) ``` 运行上面的代码会输出 `(2, 3, 4)`,表示 tensor x 的维度分别为 2、3、4。 2. 通过 size 方法 除了 shape 属性外,PyTorch 还提供了 size() 方法可以输出 tensor 的维度。size() 方法的返回值与 shape 属性相同,也是一个元组。例如: ```python import torch x = torch.randn(2, 3, 4) print(x.size()) ``` 运行上面的代码会输出 `(2, 3, 4)`,表示 tensor x 的维度分别为 2、3、4。 3. 通过 dim 属性 在 PyTorch 中,通过 dim 属性也可以获取 tensor 的维度大小。dim 属性返回 tensor 的维度数。例如: ```python import torch x = torch.randn(2, 3, 4) print(x.dim()) ``` 运行上面的代码会输出 `3`,表示 tensor x 的维度数为 3。 4. 通过 numel 方法 在 PyTorch 中,numel() 方法可以用来获取 tensor 中元素的个数。由于 tensor 中的各个元素组成了 tensor 的维度,因此也可以通过 numel() 方法来获取 tensor 的维度。具体来说,对于一个大小为 `(n1, n2, ..., nk)` 的 tensor,它的维度大小可以表示为 `(n1 * n2 * ... * nk)`。例如: ```python import torch x = torch.randn(2, 3, 4) print(x.numel()) ``` 运行上面的代码会输出 `24`,表示 tensor x 中有 24 个元素,也就是维度大小为 `(2 * 3 * 4)`。 总之,PyTorch 中有多种方法可以输出 tensor 的维度,包括 shape 属性、size() 方法、dim 属性和 numel() 方法。需要根据具体情况选择适合的方法来获取 tensor 的维度。 ### 回答3: Pytorch Tensor是深度学习框架Pytorch中最基础的数据类型,可以理解为多维数组。在深度学习中,Tensor被广泛应用于存储、传递和计算神经网络中的输入、输出、参数和梯度等数据。 在Pytorch中,我们可以通过使用Tensor的size方法来输出Tensor的维度信息。具体来说,size方法会返回一个tuple类型的结果,其中每个元素表示Tensor在对应维度上的大小。 举个例子,我们可以创建一个2x3的Tensor,然后使用size方法输出它的维度信息,代码如下所示: ``` import torch # 创建一个2x3的Tensor x = torch.randn(2, 3) # 输出Tensor的维度 print(x.size()) # 输出结果为torch.Size([2, 3]) ``` 可以看到,我们使用x.size()方法输出了Tensor的维度信息,得到的结果为torch.Size([2, 3])。其中,[2, 3]表示Tensor在第一维上有2个元素,在第二维上有3个元素。 除了使用size方法外,我们还可以使用shape属性来输出Tensor的维度信息。在Pytorch中,Tensor的size和shape属性是等价的,它们都可以用来输出Tensor在每个维度上的大小。例如,我们可以使用以下代码输出和上面相同的结果: ``` import torch # 创建一个2x3的Tensor x = torch.randn(2, 3) # 输出Tensor的维度 print(x.shape) # 输出结果为torch.Size([2, 3]) ``` 需要注意的是,在Pytorch中,size和shape方法通常是用来查询Tensor的维度信息。如果我们需要改变Tensor的维度,需要使用Pytorch中的reshape或view方法。这些方法可以将Tensor按照指定的维度进行变形,从而满足网络的输入形状要求。例如,我们可以使用以下代码将上面的Tensor变形为3x2的形状: ``` import torch # 创建一个2x3的Tensor x = torch.randn(2, 3) # 将Tensor变形为3x2的形状 x = x.reshape(3, 2) # 输出变形后的Tensor的维度 print(x.shape) # 输出结果为torch.Size([3, 2]) ``` 综上所述,Pytorch Tensor的维度信息可以通过size或shape方法输出,具体来说,这些方法均会返回一个tuple类型的结果,其中每个元素表示Tensor在对应维度上的大小。如果需要改变Tensor的形状,可以使用Pytorch中的reshape或view方法进行变形。

Pytorch 压缩Tensor维度的方法

### 回答1: PyTorch中有多种方法可以用来压缩和减小Tensor的维度,以下是其中一些常用的方法: 1. squeeze()方法:squeeze()方法可以将Tensor中维度为1的维度去除。例如,如果有一个维度为[1,3,1,5]的Tensor,使用squeeze()方法后,它的维度将变为[3,5]。使用squeeze()方法的代码示例如下: ``` import torch x = torch.randn(1, 3, 1, 5) y = x.squeeze() print(y.size()) ``` 2. unsqueeze()方法:unsqueeze()方法可以在Tensor中插入新的维度。例如,如果有一个维度为[3,5]的Tensor,使用unsqueeze()方法后,它的维度将变为[1,3,1,5]。使用unsqueeze()方法的代码示例如下: ``` import torch x = torch.randn(3, 5) y = x.unsqueeze(0) print(y.size()) ``` 3. view()方法:view()方法可以用于改变Tensor的维度,但是要保证Tensor中元素的总数不变。例如,如果有一个维度为[3,5]的Tensor,使用view(1, 1, 3, 5)方法后,它的维度将变为[1,1,3,5]。使用view()方法的代码示例如下: ``` import torch x = torch.randn(3, 5) y = x.view(1, 1, 3, 5) print(y.size()) ``` 4. reshape()方法:reshape()方法也可以用于改变Tensor的维度,但是与view()方法不同的是,reshape()方法可以改变Tensor中元素的总数。例如,如果有一个维度为[3,5]的Tensor,使用reshape(1, 1, 15)方法后,它的维度将变为[1,1,15]。使用reshape()方法的代码示例如下: ``` import torch x = torch.randn(3, 5) y = x.reshape(1, 1, 15) print(y.size()) ``` 这些方法可以根据不同的需求,灵活地压缩和减小Tensor的维度。 ### 回答2: 在PyTorch中,可以使用squeeze()函数来压缩Tensor的维度。squeeze()函数可以去除Tensor中维度为1的维度,从而达到压缩Tensor维度的效果。 具体用法如下: ``` import torch # 创建一个Tensor,维度为(1, 3, 1, 5) x = torch.randn(1, 3, 1, 5) # 使用squeeze()函数压缩维度 # 压缩后的维度为(3, 5) x_squeezed = x.squeeze() print(x.shape) # torch.Size([1, 3, 1, 5]) print(x_squeezed.shape) # torch.Size([3, 5]) ``` 在上述代码中,首先创建了一个维度为(1, 3, 1, 5)的Tensor。然后使用squeeze()函数压缩了Tensor的维度。最后打印了压缩前后的Tensor维度。 需要注意的是,squeeze()函数默认会压缩所有维度为1的维度,如果希望只压缩指定的维度,可以使用squeeze(dim)函数。其中dim表示要压缩的维度的索引。 例如,如果只想压缩第二个维度(索引为1)的维度为1的维度,可以像下面这样操作: ``` import torch # 创建一个Tensor,维度为(1, 3, 1, 5) x = torch.randn(1, 3, 1, 5) # 使用squeeze(dim)函数压缩指定维度 # 压缩后的维度为(1, 3, 5) x_squeezed = x.squeeze(2) print(x.shape) # torch.Size([1, 3, 1, 5]) print(x_squeezed.shape) # torch.Size([1, 3, 5]) ``` 在上述代码中,squeeze(2)表示只压缩第二个维度(索引为2)的维度为1的维度。输出的Tensor维度为(1, 3, 5)。 ### 回答3: 在PyTorch中,可以使用squeeze()和unsqueeze()这两个函数来压缩和扩展Tensor的维度。 squeeze()函数用于压缩Tensor中维度为1的维度。例如,假设有一个形状为(1, 3, 1, 4)的Tensor,在第0和第2维度上的维度为1,可以使用squeeze()函数将其压缩为(3,4)的形状。具体操作如下: ```python import torch x = torch.randn(1, 3, 1, 4) print(x.shape) # 输出:torch.Size([1, 3, 1, 4]) y = x.squeeze() print(y.shape) # 输出:torch.Size([3, 4]) ``` unsqueeze()函数用于在Tensor中插入维度为1的维度。例如,假设有一个形状为(3, 4)的Tensor,可以使用unsqueeze()函数在指定位置插入维度为1的维度。具体操作如下: ```python import torch x = torch.randn(3, 4) print(x.shape) # 输出:torch.Size([3, 4]) y = x.unsqueeze(0) print(y.shape) # 输出:torch.Size([1, 3, 4]) z = x.unsqueeze(1) print(z.shape) # 输出:torch.Size([3, 1, 4]) w = x.unsqueeze(2) print(w.shape) # 输出:torch.Size([3, 4, 1]) ``` 使用squeeze()和unsqueeze()函数可以方便地对Tensor进行压缩和扩展操作,便于进行后续的计算或处理。
阅读全文

相关推荐

大家在看

recommend-type

计算机图形学-小型图形绘制程序

计算机图形学-小型图形绘制程序
recommend-type

安装验证-浅谈mysql和mariadb区别

3.5 安装验证 客户机上能够启动软件就说明安装成功。 MotorSolve 成功画面 3.6 帮助 MotorSolve 上端的界面中的帮助按钮,点击可以查看详细的说明
recommend-type

基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

国密SM4加解密SM2签名验签for delphi等语言.rar

基于C#编写的COM组件DLL,可实现SM2签名验签,SM4加解密,100%适用于黑龙江省国家医保接口中进行应用。 1、调用DLL名称:JQSM2SM4.dll 加解密类名:JQSM2SM4.SM2SM4Util CLSID=5B38DCB3-038C-4992-9FA3-1D697474FC70 2、GetSM2SM4函数说明 函数原型public string GetSM2SM4(string smType, string sM2Prikey, string sM4Key, string sInput) 1)参数一smType:填写固定字符串,识别功能,分别实现SM2签名、SM4解密、SM4加密。SM2签名入参填写“SM2Sign”、SM4解密入参填写“SM4DecryptECB”、SM4加密入参填写“SM4EncryptECB”. 2)参数二sM2Prikey:SM2私钥 3)参数三sM4Key:SM4密钥 4)参数四sInput:当smType=SM2Sign,则sInput入参填写SM4加密串;当smType=SM4DecryptECB,则sInput入参填写待解密SM4密文串;当smType=SM4EncryptECB,则sInput入参填写待加密的明文串; 5)函数返回值:当smType=SM2Sign,则返回SM2签名信息;当smType=SM4DecryptECB,则返回SM4解密信息;当smType=SM4EncryptECB,则返回SM4加密信息;异常时,则返回“加解密异常:详细错误说明” 3、购买下载后,可加QQ65635204、微信feisng,免费提供技术支持。 4、注意事项: 1)基于.NET框架4.0编写,常规win7、win10一般系统都自带无需安装,XP系统则需安装;安装包详见压缩包dotNetFx40_Full_x86_x64.exe 2)C#编写的DLL,需要注册,解压后放入所需位置,使用管理员权限运行“JQSM2SM4注册COM.bat”即可注册成功,然后即可提供给第三方软件进行使用,如delphi等。
recommend-type

基于Android Studio开发的安卓的通讯录管理app

功能包含:新增联系人、编辑联系人、删除联系人、拨打电话、发送短信等相关操作。 资源包含源码:1、apk安装包 2、演示视频 3、 基本安装环境、4、运行文档 5、以及源代码

最新推荐

recommend-type

Pytorch Tensor基本数学运算详解

二维矩阵乘法要求形状匹配,但对于多维Tensor,`torch.matmul()`可以在最后两个维度进行乘法,而且在前面的维度上允许Broadcasting,只要满足匹配条件。 幂运算通过`pow()`函数或指数运算符`**`实现,例如`a.pow(2)...
recommend-type

将pytorch转成longtensor的简单方法

在PyTorch中,Tensor是数据的基本操作对象,支持各种数值计算和深度学习模型的构建。其中,LongTensor是存储整数类型数据的Tensor,通常用于存储分类标签或需要进行索引操作的数据。将其他类型的Tensor转换为Long...
recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单