NeRF领域国内外研究现状
时间: 2023-06-04 22:08:47 浏览: 475
NeRF(Neural Radiance Fields)是一种新兴的计算机视觉技术,能够通过深度学习模型从多个二维图像中还原出高质量的三维场景。下面是NeRF领域的国内外研究现状:
1. 国外研究现状
自NeRF在2020年提出以来,该领域已经吸引了很多来自世界各地的研究者的关注。现在已经有很多关于NeRF的研究论文和代码库,主要是在计算机图形学和计算机视觉领域。其中,一些代表性的工作包括:
- NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (Mildenhall等人, ECCV2020):这篇论文首次提出了NeRF的概念,是该领域的开创性工作。
- D-NeRF: Neural Radiance Fields for Dynamic Scenes (Martin-Brualla等人, CVPR2021):这篇论文针对动态场景提出了一种新的NeRF扩展方法,可以处理场景中的移动物体。
- Generative Query Network for More Flexible Object Representation (Nguyen-Phuoc等人, CVPR2019):这篇论文提出了一种称为GQN的神经网络模型,它使用场景图作为输入,并输出场景中的图像。
- PlenOctree: A Sparse Volumetric Representation for Efficient View Synthesis (Lombardi等人, SIGGRAPH Asia 2019):这篇论文提出了PlenOctree,一种用于NeRF的稀疏体积表示,可以显著提高NeRF的效率。
2. 国内研究现状
国内的NeRF研究相对较少,但近年来也有一些研究者开始在这个领域进行探索。一些代表性的工作包括:
- Point2SpatialCapsule: Implicit Surfaces from Point Clouds with Spatially-Encapsulated Features (Chen等人, NeurIPS2020):这篇论文提出了一种新的神经网络模型,可以从点云中学习隐式表面表示,是NeRF的一种变体。
- Learning High-Resolution 3D Morphable Models from Texture Images for Dynamic View Synthesis (陈浩然等人, CVPR2021):这篇论文提出了一种新的方法,可以从高分辨率的纹理图像中学习高分辨率的3D模型,并实现了高质量的动态视角合成。
- Nerf-Lite: A Light-Weight Radiance Field Network for Real-Time Rendering (王明等人, ICME2021):这篇论文提出了一种轻量级的NeRF模型,可以实现实时渲
阅读全文