python爬取招聘信息可视化

时间: 2023-06-15 11:01:44 浏览: 75
Python是一个重要的编程语言,它在web爬虫领域应用广泛。使用Python语言对招聘网站进行数据爬取可以获取大量招聘信息,并将这些信息数据可视化,能够为求职者、HR、企业提供有用的信息反馈。具体而言,实现Python爬取招聘信息可视化需要以下步骤: 1.使用Python编写爬虫程序,利用BeautifulSoup、Scrapy或其他Python爬虫框架爬取目标网站上的招聘信息。 2.通过分析和处理爬取的数据,对招聘信息进行筛选和整理,以生成抽象统计图表或可视化界面。 3.选择数据可视化软件或库,如matplotlib、Plotly等,制作和生成相关图表和数据可视化界面。 4.将筛选、整理、可视化生成的数据发布到可访问的web应用中,让人们可以通过网络浏览器访问,并进行交互和探索。 总的来说,Python爬取招聘信息可视化是一项比较复杂的任务,需要编程技术、数据采集、数据处理和数据可视化技术的结合使用。但是,这种新兴的数据技术未来有着广阔的发展前景同时能够为企业、求职者、HR等提供有价值的信息反馈。
相关问题

python爬取招聘网站及可视化

好的,针对您的问题,我可以为您提供以下的答案: 1. Python爬取招聘网站 首先,我们需要使用Python中的requests库和BeautifulSoup库来爬取网页信息。代码如下: ``` import requests from bs4 import BeautifulSoup url = 'https://www.xxx.com/' # 填写需要爬取的网站地址 html = requests.get(url).text soup = BeautifulSoup(html, 'lxml') # 接下来可以使用soup对象来提取需要的信息,例如: job_list = soup.find_all('div', class_='job-list') for job in job_list: title = job.find('a', class_='job-title').text.strip() company = job.find('div', class_='job-company').text.strip() salary = job.find('span', class_='job-salary').text.strip() print(title, company, salary) ``` 在上述代码中,我们先通过requests库获取到网页的HTML代码,然后使用BeautifulSoup库来解析HTML代码,提取需要的信息。需要注意的是,每个网站的HTML结构都不同,需要根据实际情况来进行调整。 2. 数据可视化 爬取到数据后,我们可以使用Python中的matplotlib库和seaborn库来进行数据可视化。以绘制薪资分布图为例,代码如下: ``` import matplotlib.pyplot as plt import seaborn as sns # 假设我们已经爬取到了所有职位的薪资信息,存在一个列表中 salary_list = [10000, 12000, 15000, 8000, 20000, 12000, 9000, 15000, 13000, 11000] # 绘制薪资分布图 sns.distplot(salary_list, kde=False) plt.xlabel('Salary') plt.ylabel('Count') plt.title('Salary Distribution') plt.show() ``` 在上述代码中,我们使用了seaborn库的distplot函数来绘制薪资分布图,同时使用matplotlib库来设置图表的标题、X轴、Y轴等属性。需要注意的是,每个数据集的可视化方式都不同,需要根据实际情况来进行调整。

爬取招聘网站可视化django

实现爬取招聘网站并将结果可视化需要分为两个部分: 1. 爬取招聘网站数据 可以使用Python的requests库和BeautifulSoup库来爬取招聘网站数据,具体步骤如下: - 使用requests库发送HTTP请求获取网页内容。 - 使用BeautifulSoup库解析HTML内容,提取需要的数据。 - 将提取的数据保存到数据库中。 以下是一个示例代码,用于从拉钩网爬取Python开发岗位信息并保存到数据库中: ``` import requests from bs4 import BeautifulSoup import sqlite3 # 发送HTTP请求获取网页内容 url = 'https://www.lagou.com/zhaopin/Python/' headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, headers=headers) html = response.text # 使用BeautifulSoup库解析HTML内容,提取需要的数据 soup = BeautifulSoup(html, 'html.parser') jobs = soup.find_all('li', class_='con_list_item') # 将提取的数据保存到数据库中 conn = sqlite3.connect('jobs.db') c = conn.cursor() c.execute('''CREATE TABLE IF NOT EXISTS jobs (id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT, company TEXT, salary TEXT, experience TEXT, education TEXT)''') for job in jobs: title = job.find('div', class_='job_title').text.strip() company = job.find('div', class_='company_name').text.strip() salary = job.find('span', class_='money').text.strip() experience = job.find('div', class_='p_bot').find_all('div')[0].text.strip() education = job.find('div', class_='p_bot').find_all('div')[1].text.strip() c.execute("INSERT INTO jobs (title, company, salary, experience, education) VALUES (?, ?, ?, ?, ?)", (title, company, salary, experience, education)) conn.commit() conn.close() ``` 2. 可视化数据 可以使用Django框架来实现数据的可视化展示,具体步骤如下: - 创建Django项目和应用。 - 在应用中创建视图函数,从数据库中读取数据并渲染模板。 - 创建模板文件,使用HTML、CSS和JavaScript等技术来实现数据的可视化展示。 以下是一个示例代码,用于在Django中实现从数据库中读取Python开发岗位信息并使用ECharts来可视化展示: 1. 创建Django项目和应用 ``` # 创建Django项目 django-admin startproject job_visualization # 创建Django应用 cd job_visualization python manage.py startapp job ``` 2. 在应用中创建视图函数 在job/views.py文件中创建如下视图函数: ``` from django.shortcuts import render from django.db import connection def index(request): cursor = connection.cursor() cursor.execute("SELECT company, COUNT(*) as num FROM jobs GROUP BY company ORDER BY num DESC LIMIT 10") rows = cursor.fetchall() data = [(row[0], row[1]) for row in rows] return render(request, 'index.html', {'data': data}) ``` 该视图函数从数据库中读取Python开发岗位信息,并对公司进行聚合统计,按照岗位数量降序排列,取前10个公司。然后将数据传递给模板。 3. 创建模板文件 在job/templates/index.html文件中创建如下模板文件: ``` <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Python开发岗位可视化</title> <script src="https://cdn.bootcdn.net/ajax/libs/echarts/5.2.1/echarts.min.js"></script> </head> <body> <div id="chart" style="width: 800px; height: 600px;"></div> <script> var chart = echarts.init(document.getElementById('chart')); var option = { title: { text: 'Python开发岗位公司TOP10', left: 'center' }, tooltip: {}, xAxis: { type: 'category', data: [ {% for row in data %} '{{ row.0 }}', {% endfor %} ], axisLabel: { interval: 0, rotate: 45 } }, yAxis: { type: 'value' }, series: [{ type: 'bar', data: [ {% for row in data %} {{ row.1 }}, {% endfor %} ] }] }; chart.setOption(option); </script> </body> </html> ``` 该模板文件使用ECharts库来实现数据的可视化展示,展示Python开发岗位公司TOP10的柱状图。其中,数据从视图函数中传递过来。 4. 配置URL路由 在job/urls.py文件中配置URL路由,将/index/映射到视图函数index: ``` from django.urls import path from . import views urlpatterns = [ path('index/', views.index, name='index'), ] ``` 5. 运行Django项目 运行Django项目,访问http://localhost:8000/index/即可看到Python开发岗位公司TOP10的柱状图。

相关推荐

Python爬虫是一种通过编写程序来获取互联网上的数据的技术。对于爬取招聘网站数据,可以使用Python中的一些第三方库如Scrapy或BeautifulSoup来实现。 首先,我们需要分析招聘网站的HTML结构,找到我们需要爬取的数据所在的元素位置。然后,编写Python代码,使用相应的库来提取所需的数据。这些数据可以包括职位名称、公司名称、薪资水平等。 接下来,我们可以使用Tableau来进行数据可视化和交互。Tableau是一款功能强大的商业智能工具,可以帮助我们将数据变成易于理解和分析的可视化图表。可以通过将爬取到的数据导入Tableau,然后使用Tableau的图表、地图、仪表盘等功能来展示数据。 通过Tableau的交互大屏功能,我们可以实现对数据的实时展示和交互。例如,我们可以设置数据刷新时间,使得大屏能够显示最新的招聘信息。我们还可以添加筛选器和参数控制,使用户能够自由地根据需求进行数据过滤和分析。 最后,将Python爬取数据和Tableau可视化交互大屏的源码整合起来,就可以实现将招聘网站数据爬取并用Tableau进行可视化展示的功能。这个源码可以分为两部分,一部分是爬虫代码,负责数据的爬取和处理;另一部分是Tableau代码,负责将数据导入Tableau并进行可视化展示。 综上所述,通过Python爬虫获取招聘网站数据,并使用Tableau进行可视化交互大屏展示,是一种非常有效的数据分析方法。这样可以将庞大的数据转化为直观、易懂的图表,方便用户进行数据的理解和决策。
### 回答1: Django和Python招聘信息可视化是指通过使用Django框架和Python语言来实现对招聘信息进行可视化展示和分析的功能。 该项目主要包括以下几个方面的实现: 1. 数据爬取:使用Python编写网络爬虫程序,定期从招聘网站上爬取最新的招聘信息,并将其保存到数据库中。 2. 数据处理:使用Python对爬取到的数据进行清洗和处理,包括去除重复数据、筛选关键信息等。 3. 数据存储:将处理后的数据存储到数据库中,以供后续的可视化展示和分析使用。 4. 可视化展示:使用Django框架搭建一个Web应用,通过前端页面展示招聘信息的可视化图表,比如柱状图、饼图等。用户可以在页面上选择不同的条件进行筛选和排序,以便更好地了解和比较不同的招聘信息。 5. 数据分析:利用Python中的数据分析库,对招聘信息进行进一步的统计分析和挖掘。比如可以统计某个岗位的需求量、薪资水平、工作地点等信息,从而为求职者提供更加全面的参考。 6. 用户交互:用户可以在页面上进行搜索、筛选等操作,以便更精确地找到符合自己需求的招聘信息。同时,还可以提供用户反馈功能,以便改进和完善系统的功能和用户体验。 通过实现这样一个招聘信息可视化系统,能够帮助用户更加直观、全面地了解当前的招聘市场状况,提供有价值的参考和指导,同时也减少了用户搜索和筛选的时间成本,提高了工作效率。 ### 回答2: Django是一个流行的Python web框架,它提供了简单易用的功能来开发强大的web应用程序。招聘信息可视化是指将招聘信息从文本数据转换为图表、图形、地图或其他可视化形式,以便更好地理解和分析这些信息。 在使用Django进行招聘信息可视化时,可以从以下几个方面来实现: 1. 数据采集:首先,需要从招聘网站或其他数据源中采集招聘信息。可以使用Python编写爬虫程序,通过调用相应的API或使用网络爬虫库进行数据抓取。获取到的招聘信息可以保存到数据库中,以便后续的处理和分析。 2. 数据预处理:获取到的原始数据可能存在一些噪声或不一致的情况,需要进行预处理。可以使用Python的Pandas库对数据进行清洗、去重、统一格式等操作,确保数据的准确性和一致性。 3. 数据存储:使用Django的数据模型来定义招聘信息的存储结构,并将清洗后的数据保存到数据库中。可以使用Django的ORM来进行数据库操作,例如增、删、改、查等。 4. 可视化设计:根据需求和目标,选择合适的可视化工具和图表库,例如Matplotlib、Seaborn、Plotly等。使用这些工具可以将招聘信息转换为柱状图、折线图、饼图、散点图等形式,展示不同维度的招聘数据。 5. 数据展示:将设计好的可视化图表嵌入到Django的网页中,以供用户访问和查看。可以使用Django的模板引擎将可视化图表渲染到网页上,并提供交互功能,例如筛选、排序、搜索等。 6. 用户交互:为了增强用户体验,可以添加用户交互功能,例如点击图表上的数据点可以显示详细信息、拖动滑块可以调整图表的时间范围等。 通过以上步骤,我们可以使用Django和Python将招聘信息转换为可视化图表,并将其展示在网页上,使用户更加直观、方便地了解和分析招聘信息。 ### 回答3: Django是一个开源的Python Web框架,主要用于开发高效、可扩展的Web应用程序。而Python作为一种简单易学的脚本语言,拥有丰富的第三方库和强大的数据处理能力。因此,结合Django和Python来进行招聘信息可视化是一个理想的选择。 招聘信息可视化是将招聘市场中的数据进行整理、分析和可视化展示,以帮助求职者和招聘方进行决策并了解招聘市场的动态。在这个过程中,Django和Python可以发挥重要的作用。 首先,Django提供了一个强大的Web开发框架,可以方便地构建招聘信息的数据管理后台。通过Django的模型、视图和模板,可以轻松地与数据库交互,实现对招聘信息的增删改查等操作。同时,Django的表单和验证功能也可以用来收集和验证用户输入的信息。 其次,Python作为一种高级编程语言,可以用于进行数据处理和可视化分析。Python拥有丰富的数据处理库,如Pandas和NumPy,可以对招聘信息进行清洗、筛选和分析。此外,Python还有诸多可视化库,如Matplotlib和Seaborn,可以绘制各种图表和图形,以便于直观地展示招聘市场的数据。 最后,使用Django和Python来开发招聘信息可视化系统,可以实现前后端的分离和模块化开发。Django作为后端框架可以负责数据的处理和业务逻辑的实现,而Python则可以负责数据的分析和可视化展示。这种分工合作可以提高开发的效率和系统的可维护性,同时也可以更好地发挥Django和Python的优势。 综上所述,Django和Python是开发招聘信息可视化系统的理想选择。它们提供了强大的功能和工具,可以帮助我们高效地处理数据、实现业务逻辑和进行可视化展示,从而为求职者和招聘方提供更好的决策依据。
Python是一种功能强大的编程语言,广泛应用于数据分析领域。而Spring Boot是一种Java开发框架,用于构建快速、高效的后端接口。结合这两个技术,我们可以实现招聘信息的可视化分析。 首先,我们需要收集和处理招聘信息的数据。可以使用Python的网络爬虫库去爬取各大招聘网站上的数据,并存储到数据库中。为了方便存储和查询,可以选择使用MySQL或者MongoDB等数据库。 接下来,我们可以使用Python中的数据处理和分析库,例如Pandas和Numpy,对招聘数据进行清洗和整理。去除重复数据、格式化数据等,确保数据的准确性和一致性。 然后,我们可以使用Python的数据可视化库,如Matplotlib和Seaborn,来创建图表和可视化工具,将招聘信息进行可视化展示。可以根据需求绘制各种图表,例如饼图、线图、柱形图等,展示各种招聘信息的分布和趋势。 此外,借助Spring Boot的接口开发能力,我们可以将这些数据可视化的图表和工具嵌入到一个Web应用中。通过编写接口,前端页面可以从后端获取招聘数据并调用数据可视化工具,将结果以图表的形式展示给用户。用户可以通过搜索、过滤等方式与数据进行交互,从而获得更加丰富和深入的招聘信息。 总之,结合Python数据分析和Spring Boot接口开发,我们可以实现招聘信息的可视化展示。这有助于招聘人员和求职者更好地了解当前的招聘市场,提供决策支持和参考。同时,也提升了用户对招聘信息的可视化分析能力,帮助他们更好地了解行业动态和就业趋势。
Python是一种广泛应用于网络爬虫的高级编程语言,可以用于开发众多类型的爬虫,包括招聘数据爬虫。招聘数据爬虫可视化系统能够以图表等可视化方式展示招聘数据,并依据数据的特征进行数据分析和挖掘,有助于招聘决策者进行数据驱动的招聘决策。 本系统的设计与实现可分为以下几个步骤: 第一步是爬取招聘数据,可以使用Python的requests和BeautifulSoup库来实现网站爬取和数据解析。在爬取时需要注意反爬虫机制,并对爬取到的数据进行去重和清洗处理。 第二步是数据存储,需要选择合适的数据库作为数据存储介质。常用的有MySQL、MongoDB、Redis等,在其基础上使用Python的ORM框架,如SQLAlchemy等,来实现数据的CRUD操作。 第三步是数据分析与挖掘,需要基于数据量较大的情况下,使用数据可视化工具,如Matplotlib、Seaborn、Pyecharts等,来绘制各种图表,如饼图、折线图、柱状图等。同时,还需要进行数据挖掘,如使用分类器、聚类算法等进行数据分析,以了解数据背后的规律和特征。 第四步是前端展示,需要使用Python的web框架,如Django、Flask等,来实现前端与后台的交互。在前端展示时,可以使用前端UI框架,如Bootstrap、Ant Design等,来美化前端页面,同时为用户提供便捷的操作和查看招聘数据的功能。 总之,基于Python的招聘数据爬虫可视化系统的设计与实现是一项较为复杂的工作,需要多方面的技术支持,对于招聘决策者来说,这可以有效提高决策效率,减少招聘成本。
PYTHON爬虫技术是目前网络爬虫领域里面最流行、最实用的技术,如何利用PYTHON爬虫技术设计并实现一个基于PYTHON的招聘网站爬虫,以及如何利用数据可视化工具将所爬取到的数据进行分析展示,这是本文要介绍的主题。 在实现基于PYTHON的招聘网站爬虫前,首先需要确定要爬取数据的网站、内容以及数据格式。我们可以选择各大招聘网站如BOSS、拉钩、智联等,选取一些主要城市的岗位、薪资、条件等信息。然后根据网站结构和内容进行适当的解析,将获取到的数据保存至数据库中。 针对PYTHON的招聘网站爬虫实现,我们需要掌握基本的网络请求与解析模块,如Requests, BeautifulSoup, Scrapy等。Requests用于模拟HTTP请求;BeautifulSoup和Scrapy则是解析网页、采集页面信息以及清洗数据的重要工具。在利用这些工具的基础上,我们需要对一些常见的异常(如反扒机制、分页)进行处理,以便优化我们的爬虫程序,保证数据的完备性和准确性。 一旦得到所需数据,我们可以利用PYTHON的数据可视化模块进行展示,熟练运用Matplotlib、Seaborn、Plotly等工具,可以对爬取的数据进行分类筛选、计算分析、图表展示等操作。这些功能可以很好地增加网站的可读性和卖点,吸引更多人的关注。 总而言之,PYTHON爬虫技术在招聘网站数据爬取和可视化方面具有着极大的优势。在实际操作中,我们需要熟练运用PYTHON网络爬虫和数据可视化的技术,具备对个体网站及其实现细节的深入理解,才能更好地完成我们的设计与实现。
### 回答1: 在现今数据爆炸的时代,Python作为一种高效简洁的编程语言,发挥着越来越重要的作用。许多公司都在招聘Python分析师来解决数据分析、数据挖掘、机器学习和人工智能等领域的重要任务。 Python分析师的职责主要是编写和维护Python代码,通过Python工具和库提取有价值的信息,并分析和解释这些数据,形成详尽的分析报告和结果可视化。同时,Python分析师还需要参与设计数据分析流程,对现有数据分析流程提出改进意见,确保数据分析流程高效稳定地运转。 除了基础编程技能外,Python分析师还需要具备扎实的统计学和数学知识,以及良好的沟通和团队合作能力。因为在工作中,Python分析师需要与其他相关部门(例如数据采集团队、业务人员、技术人员等)协作,理解他们的需求和数据使用情境,并为他们提供数据分析和解释的支持。同时,Python分析师也需要与管理层沟通,并将数据分析结果进行汇报和解释。 总之,Python分析师是现代企业中不可或缺的数据分析专家。具备Python分析技能的求职者将有更广泛的职业发展机会,同时也能为公司带来更多的商业价值和竞争力。 ### 回答2: 招聘信息的Python分析可以应用于对招聘市场进行数据挖掘和分析,有助于了解招聘需求、行业趋势以及职位要求等信息。 首先,Python可以用于爬取多个招聘网站上的信息,如职位名称、公司名称、薪资待遇、工作地点等,并将其保存为结构化的数据。通过Python的爬虫技术,可以快速、自动地获取大量的招聘信息。 其次,利用Python的数据分析库(例如pandas和numpy),可以对招聘信息进行清洗和处理,去除重复数据、填充缺失值、转换数据格式等,使数据具备更好的可分析性。 然后,可以借助Python的可视化库(例如matplotlib和seaborn),对招聘信息进行可视化分析。通过绘制柱状图、饼图、折线图等,可以直观地展示不同职位的需求量、不同城市的招聘热度等信息,从而帮助求职者了解市场需求情况。 此外,还可以利用Python的文本挖掘技术,对职位描述进行自然语言处理和情感分析。通过提取关键词、统计职位描述中的词频等方式,可以帮助我们了解不同职位的技能要求和工作内容,并对招聘信息进行主题分类和情感识别,以进一步了解市场趋势。 总之,招聘信息的Python分析可以通过数据爬取、清洗、数据分析和可视化等方法,为求职者提供准确、全面的市场信息,帮助其了解招聘需求、职位趋势以及提高就业竞争力。
好的,这是一个比较常见的数据爬取和分析任务。首先我们需要使用 Python 编写一个爬虫程序来爬取前程无忧的招聘信息。这里我推荐使用 Python 的 requests 和 BeautifulSoup 库来实现。 以下是爬虫程序的主要步骤: 1. 使用 requests 库发送 HTTP 请求获取网页内容。 2. 使用 BeautifulSoup 库解析 HTML 页面,提取出目标数据。 3. 保存数据到本地或数据库中。 具体实现过程可以参考以下代码: python import requests from bs4 import BeautifulSoup import pandas as pd # 发送 HTTP 请求获取网页内容 url = 'https://search.51job.com/list/000000,000000,0000,00,9,99,计算机,2,1.html' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} response = requests.get(url, headers=headers) html = response.content.decode('gbk') # 使用 BeautifulSoup 库解析 HTML 页面,提取出目标数据 soup = BeautifulSoup(html, 'html.parser') job_list = soup.find_all('div', class_='el') data = [] for job in job_list: job_name = job.find('a').text.strip() company_name = job.find('span', class_='t2').text.strip() salary = job.find('span', class_='t4').text.strip() location = job.find('span', class_='t3').text.strip() publish_date = job.find('span', class_='t5').text.strip() data.append([job_name, company_name, salary, location, publish_date]) # 保存数据到本地 df = pd.DataFrame(data, columns=['职位名称', '公司名称', '薪资', '工作地点', '发布日期']) df.to_excel('job_info.xlsx', index=False) # 做简单可视化分析 import matplotlib.pyplot as plt # 统计每个工作地点的招聘数量 location_count = df.groupby('工作地点')['职位名称'].count().sort_values(ascending=False) # 绘制柱状图 plt.bar(location_count.index, location_count.values) plt.title('招聘岗位地区分布') plt.xlabel('工作地点') plt.ylabel('招聘数量') plt.show() 通过以上爬虫程序,我们可以将前程无忧招聘网站上的计算机类岗位信息爬取下来,并保存到本地的 Excel 表格中。同时,我们还可以做简单的可视化分析,例如统计每个工作地点的招聘数量并绘制柱状图。 注意:在爬取数据时需要注意网站的反爬机制,不能频繁发送请求,否则可能会被网站禁止访问。建议使用代理 IP 或者设置适当的请求间隔来避免被封禁。
为了从51job网站上爬取和清洗Python相关的数据,可以按照以下步骤进行操作: 1. 使用Python的requests模块发送HTTP请求,获取51job网站上的页面内容。可以使用如下代码片段作为示例: python import requests url = "https://search.51job.com/list/170200,000000,0000,00,9,99,python,2,1.html?lang=c&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare=" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:94.0) Gecko/20100101 Firefox/94.0" } response = requests.get(url, headers=headers) 2. 使用Python的HTML解析库,例如BeautifulSoup,解析网页内容并提取所需的数据。根据你的需求,你可以提取职位标题、发布日期、工资、工作地点、工作经验、学历要求、招聘人数、公司类别和公司规模等信息。 3. 将提取的数据保存到本地文件,例如CSV文件。你可以使用Python的CSV模块将数据写入CSV文件中,以便后续的数据清洗和分析。 4. 对保存的数据进行清洗和处理。根据你的需求,可能需要删除重复的数据、处理缺失值、格式化日期等。 5. 使用可视化库,例如pyecharts,对清洗后的数据进行可视化展示。你可以根据数据的特点选择适当的图表类型,如柱状图、折线图等,以帮助你更好地理解和分析数据。 通过以上步骤,你可以使用Python爬取和清洗51job网站上的Python相关数据,并对数据进行可视化展示。123 #### 引用[.reference_title] - *1* *2* *3* [记一次爬虫学习(爬取51job)](https://blog.csdn.net/qq_52720527/article/details/124368257)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

最新推荐

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�

mac redis 的安装

以下是在Mac上安装Redis的步骤: 1. 打开终端并输入以下命令以安装Homebrew: ```shell /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. 安装Redis: ```shell brew install redis ``` 3. 启动Redis服务: ```shell brew services start redis ``` 4. 验证Redis是否已成功安装并正在运行: ```shell redis-cli ping

计算机应用基础Excel题库--.doc

计算机应用根底Excel题库 一.填空 1.Excel工作表的行坐标范围是〔 〕。 2.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。 3.对数据清单中的数据进行排序时,对每一个字段还可以指定〔 〕。 4.Excel97共提供了3类运算符,即算术运算符.〔 〕 和字符运算符。 5.在Excel中有3种地址引用,即相对地址引用.绝对地址引用和混合地址引用。在公式. 函数.区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 6.在Excel 工作表中,在某单元格的编辑区输入"〔20〕〞,单元格内将显示( ) 7.在Excel中用来计算平均值的函数是( )。 8.Excel中单元格中的文字是( 〕对齐,数字是( )对齐。 9.Excel2021工作表中,日期型数据"2008年12月21日"的正确输入形式是( )。 10.Excel中,文件的扩展名是( )。 11.在Excel工作表的单元格E5中有公式"=E3+$E$2",将其复制到F5,那么F5单元格中的 公式为( )。 12.在Excel中,可按需拆分窗口,一张工作表最多拆分为 ( )个窗口。 13.Excel中,单元格的引用包括绝对引用和( ) 引用。 中,函数可以使用预先定义好的语法对数据进行计算,一个函数包括两个局部,〔 〕和( )。 15.在Excel中,每一张工作表中共有( )〔行〕×256〔列〕个单元格。 16.在Excel工作表的某单元格内输入数字字符串"3997",正确的输入方式是〔 〕。 17.在Excel工作薄中,sheet1工作表第6行第F列单元格应表示为( )。 18.在Excel工作表中,单元格区域C3:E4所包含的单元格个数是( )。 19.如果单元格F5中输入的是=$D5,将其复制到D6中去,那么D6中的内容是〔 〕。 Excel中,每一张工作表中共有65536〔行〕×〔 〕〔列〕个单元格。 21.在Excel工作表中,单元格区域D2:E4所包含的单元格个数是( )。 22.Excel在默认情况下,单元格中的文本靠( )对齐,数字靠( )对齐。 23.修改公式时,选择要修改的单元格后,按( )键将其删除,然后再输入正确的公式内容即可完成修改。 24.( )是Excel中预定义的公式。函数 25.数据的筛选有两种方式:( )和〔 〕。 26.在创立分类汇总之前,应先对要分类汇总的数据进行( )。 27.某一单元格中公式表示为$A2,这属于( )引用。 28.Excel中的精确调整单元格行高可以通过〔 〕中的"行〞命令来完成调整。 29.在Excel工作簿中,同时选择多个相邻的工作表,可以在按住( )键的同时,依次单击各个工作表的标签。 30.在Excel中有3种地址引用,即相对地址引用、绝对地址引用和混合地址引用。在公式 、函数、区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 31.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。多重排序 32.Excel工作表的行坐标范围是( 〕。1-65536 二.单项选择题 1.Excel工作表中,最多有〔〕列。B A.65536 B.256 C.254 D.128 2.在单元格中输入数字字符串100083〔邮政编码〕时,应输入〔〕。C A.100083 B."100083〞 C. 100083   D.'100083 3.把单元格指针移到AZ1000的最简单方法是〔〕。C A.拖动滚动条 B.按+〈AZ1000〉键 C.在名称框输入AZ1000,并按回车键 D.先用+〈 〉键移到AZ列,再用+〈 〉键移到1000行 4.用〔〕,使该单元格显示0.3。D A.6/20 C.="6/20〞 B. "6/20〞 D.="6/20〞 5.一个Excel工作簿文件在第一次存盘时不必键入扩展名,Excel自动以〔B〕作为其扩展 名。 A. .WK1 B. .XLS C. .XCL D. .DOC 6.在Excel中,使用公式输入数据,一般在公式前需要加〔〕A A.= B.单引号 C.$ D.任意符号 7.在公式中输入"=$C1+E$1〞是〔〕C A.相对引用 B.绝对引用 C.混合引用 D.任意引用 8.以下序列中,不能直接利用自动填充快速输入的是〔 〕B A.星期一.星期二.星期三 .…… B.第一类.第二类.第三类.…… C.甲.乙.丙.…… D.Mon.Tue.Wed.…… 9.工作表中K16单元格中为公式"=F6×$D$4〞,在第3行处插入一行,那么插入后K7单元 格中的公式为〔 〕A A.=F7*$D$5 B.=F7*$D$4 C

基于PC机资源的分布式计算系统中相干任务求解方法及其优势

© 2014 Anatoly Kalyaev,Iakov Korovin.出版社:Elsevier B.V.由美国应用科学研究所负责选择和/或同行评审可在www.sciencedirect.com在线获取ScienceDirectAASRI Procedia 9(2014)131 - 1372014年AASRI电路与信号处理会议(CSP 2014)利用空闲PC机解决相干任务Anatoly Kalyaeva *,Iakov Korovina南方联邦大学多处理器计算系统科学研究所,2,塔甘罗格347922,俄罗斯摘要本文提出了一种基于PC机资源的分布式计算系统中相干任务求解的新方法。这些资源的参数是动态变化的,这使得它很难在分布式计算中的应用。该方法采用多智能体方法,通过智能体的主动控制,实现了分布式计算系统中个人计算机的有效利用,并通过智能体之间的交互,分散调度任务求解过程。为了解决每一个传入的连贯任务,系统的代理联合成社区,这使得它更容易调度和执行计算。该方法的主要优点是降低了分布式�

ERROR 1045 (28000): Access denied for user 'daizong'@'localhost' (using password: NO) mac

这个错误提示表明您正在尝试使用用户名'daizong'在本地主机上连接到MySQL服务器,但是没有提供密码。这可能是因为您在连接字符串中没有指定密码,或者您提供的密码不正确。要解决此问题,您可以尝试以下几个步骤: 1. 确保您在连接字符串中提供了正确的密码。例如,如果您的密码是'password',则您的连接字符串应该类似于以下内容: ``` mysql -u daizong -ppassword ``` 2. 如果您确定密码正确,但仍然无法连接,请尝试重置MySQL root用户的密码。您可以按照以下步骤操作: - 停止MySQL服务器 ```

毕业论文springboot297毕业生实习与就业管理系统的设计与实现论文.doc

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。