yolov5+deepsort行人跟踪环境配置
时间: 2023-09-24 17:10:46 浏览: 126
yolov5+Deepsort部署于rk3588和rk3399pro开发板C++完整源码(车辆行人跟踪)+模型+部署文档.zip
5星 · 资源好评率100%
以下是 yolov5+deepsort 行人跟踪环境配置的步骤:
1. 安装 Anaconda,可以从官网下载安装包进行安装。
2. 创建一个 Anaconda 环境,可以使用以下命令:
```
conda create --name <env_name> python=3.7
```
其中,`<env_name>` 是你要创建的环境名称。
3. 激活 Anaconda 环境,使用以下命令:
```
conda activate <env_name>
```
4. 安装 PyTorch,可以根据自己的 CUDA 版本和 PyTorch 版本选择相应的安装方式。下面是一个例子:
```
conda install pytorch torchvision torchaudio cudatoolkit=<cuda_version> -c pytorch
```
其中,`<cuda_version>` 是你的 CUDA 版本。
5. 安装其它依赖库,可以使用以下命令:
```
pip install opencv-python pillow numpy scipy matplotlib tqdm
```
6. 克隆 yolov5 代码库,可以使用以下命令:
```
git clone https://github.com/ultralytics/yolov5.git
```
7. 下载 yolov5 模型文件,可以去 yolov5 代码库的 release 页面下载,也可以使用以下命令:
```
python models/download.py --weights yolov5s.pt
```
8. 克隆 deepsort 代码库,可以使用以下命令:
```
git clone https://github.com/nwojke/deep_sort.git
```
9. 下载 deepsort 模型文件,可以去 deepsort 代码库的 release 页面下载,也可以使用以下命令:
```
wget https://github.com/nwojke/deep_sort/releases/download/20200604/deep_sort_model.tar.gz
tar -xzvf deep_sort_model.tar.gz
```
10. 运行行人跟踪程序,可以使用以下命令:
```
python demo.py --source <video_path> --weights yolov5s.pt --cfg deep_sort.yaml --img-size 640
```
其中,`<video_path>` 是要处理的视频文件路径。
阅读全文