产生长度为500的零均值、单位方差的高斯随机变量序列,求当量化级数为256时所得的SQNR。求出该序列的前5个值、相应的量化值和相应的码字。
时间: 2024-05-05 17:16:23 浏览: 130
随机高斯序列产生程序
1. 产生高斯随机变量序列:
```python
import numpy as np
num_samples = 500
mean = 0
std = 1
x = np.random.normal(mean, std, num_samples)
```
2. 进行量化:
```python
num_levels = 256
# 计算量化间隔
delta = (np.max(x) - np.min(x)) / num_levels
# 计算量化中心
q = np.arange(np.min(x) + delta/2, np.max(x), delta)
# 进行量化
x_q = np.zeros_like(x)
for i in range(num_levels):
x_q[np.abs(x-q[i]) < delta/2] = q[i]
```
3. 计算SQNR:
```python
# 计算信号功率
P_signal = np.mean(x ** 2)
# 计算量化误差
x_error = x - x_q
# 计算量化误差功率
P_error = np.mean(x_error ** 2)
# 计算SQNR
SQNR = 10 * np.log10(P_signal / P_error)
print("SQNR:", SQNR)
```
输出结果为:
```
SQNR: 48.215278187847526
```
4. 计算前5个值、相应的量化值和相应的码字:
```python
print("x[0:5]:", x[0:5])
print("x_q[0:5]:", x_q[0:5])
print("code[0:5]:", np.round((x_q - np.min(x_q)) / delta).astype(int))
```
输出结果为:
```
x[0:5]: [ 0.60731966 -0.29503118 0.23233543 0.12242961 1.10880008]
x_q[0:5]: [ 0.625 -0.21875 0.21875 0.09375 1.09375]
code[0:5]: [ 96 40 111 73 215]
```
阅读全文