隶书和行楷字体识别,pytorch实践,代码且逐行注释
时间: 2024-02-28 08:57:24 浏览: 92
隶书行楷数据集-中文字体识别
5星 · 资源好评率100%
好的,以下是针对隶书和行楷字体识别的PyTorch实践代码,每行都有注释说明:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# 定义数据预处理的方式
transform = transforms.Compose([
transforms.ToTensor(), # 将图像转换为Tensor类型
transforms.Normalize((0.5,), (0.5,)) # 对图像进行标准化
])
# 加载训练集和测试集数据
train_dataset = datasets.ImageFolder(root="./train_data", transform=transform)
test_dataset = datasets.ImageFolder(root="./test_data", transform=transform)
# 定义batch size大小和epoch轮数
batch_size = 32
epochs = 10
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# 定义模型,这里使用简单的卷积神经网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 7 * 7, 128)
self.fc2 = nn.Linear(128, 2)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 64 * 7 * 7)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 实例化模型
model = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 开始训练
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# 在测试集上测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))
# 保存模型
torch.save(model.state_dict(), 'font_classification.pt')
```
该代码实现了隶书和行楷字体的分类,利用了PyTorch框架中的卷积神经网络结构,通过对训练集和测试集数据的预处理和加载,训练出一个分类器,最后进行准确率测试并保存模型。
阅读全文