中文字体识别—书和行楷,pytorch实现,代码
时间: 2024-02-28 09:57:06 浏览: 51
pytorch实现文字点选、选字、选择文字验证码识别_中文字检测识别.zip
5星 · 资源好评率100%
以下是使用PyTorch实现中文字体识别的示例代码:
首先,导入需要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os
```
定义数据集类:
```python
class ChineseFontDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.samples = []
for char_dir in os.listdir(self.root_dir):
for font_dir in os.listdir(os.path.join(self.root_dir, char_dir)):
for file_name in os.listdir(os.path.join(self.root_dir, char_dir, font_dir)):
img_path = os.path.join(self.root_dir, char_dir, font_dir, file_name)
self.samples.append((img_path, char_dir, font_dir))
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
img_path, char_dir, font_dir = self.samples[idx]
img = Image.open(img_path).convert('L')
label = int(char_dir)
font = 0 if font_dir == 'simkai' else 1
if self.transform:
img = self.transform(img)
return img, label, font
```
定义模型:
```python
class ChineseFontCNN(nn.Module):
def __init__(self):
super(ChineseFontCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 7 * 7, 128)
self.fc2 = nn.Linear(128, 2)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool2(x)
x = x.view(-1, 64 * 7 * 7)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
```
定义训练函数:
```python
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target, font) in enumerate(train_loader):
data, target, font = data.to(device), target.to(device), font.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.CrossEntropyLoss()(output, font)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
```
定义测试函数:
```python
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target, font in test_loader:
data, target, font = data.to(device), target.to(device), font.to(device)
output = model(data)
test_loss += nn.CrossEntropyLoss()(output, font).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(font.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
```
定义数据集和数据加载器:
```python
transform = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_set = ChineseFontDataset('train', transform=transform)
test_set = ChineseFontDataset('test', transform=transform)
train_loader = DataLoader(train_set, batch_size=64, shuffle=True)
test_loader = DataLoader(test_set, batch_size=64)
```
训练和测试模型:
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ChineseFontCNN().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
for epoch in range(1, 11):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
```
以上就是使用PyTorch实现中文字体识别的代码示例。注意,这里的代码仅仅是示例,实际应用中可能需要进行更多的调试和优化。
阅读全文