尝试用c语言编写一个算法来计算哈夫曼树的wpl(带权路径长度)。
时间: 2024-03-18 16:39:58 浏览: 82
使用C语言详解霍夫曼树数据结构
好的,下面是一个用C语言实现的计算哈夫曼树WPL的算法:
```c
#include <stdio.h>
#include <stdlib.h>
#define MAX 100
typedef struct node{
int data;
int weight;
int parent;
int leftChild;
int rightChild;
}HuffmanNode;
void createHuffmanTree(HuffmanNode *huffmanTree, int n);
void selectMin(HuffmanNode *huffmanTree, int n, int *s1, int *s2);
void calcWPL(HuffmanNode *huffmanTree, int n, int *wpl);
int main()
{
HuffmanNode huffmanTree[MAX];
int n, wpl;
printf("请输入叶子结点的个数:");
scanf("%d", &n);
createHuffmanTree(huffmanTree, n);
calcWPL(huffmanTree, n, &wpl);
printf("哈夫曼树的带权路径长度为:%d\n", wpl);
return 0;
}
void createHuffmanTree(HuffmanNode *huffmanTree, int n){
int i, s1, s2;
// 初始化哈夫曼树,将所有节点的父节点,左右孩子都赋为-1
for(i=0; i<2*n-1; i++){
huffmanTree[i].data = i;
huffmanTree[i].weight = 0;
huffmanTree[i].parent = -1;
huffmanTree[i].leftChild = -1;
huffmanTree[i].rightChild = -1;
}
// 输入n个叶子节点的权值
printf("请输入%d个叶子节点的权值:\n", n);
for(i=0; i<n; i++){
huffmanTree[i].weight = rand()%10+1; // 这里用随机数生成权值
}
// 构建哈夫曼树
for(i=n; i<2*n-1; i++){
selectMin(huffmanTree, i, &s1, &s2);
huffmanTree[s1].parent = i;
huffmanTree[s2].parent = i;
huffmanTree[i].leftChild = s1;
huffmanTree[i].rightChild = s2;
huffmanTree[i].weight = huffmanTree[s1].weight + huffmanTree[s2].weight;
}
}
void selectMin(HuffmanNode *huffmanTree, int n, int *s1, int *s2){
int i, min1, min2;
min1 = min2 = 99999;
for(i=0; i<n; i++){
if(huffmanTree[i].parent == -1){
if(huffmanTree[i].weight < min1){
min2 = min1;
*s2 = *s1;
min1 = huffmanTree[i].weight;
*s1 = i;
}else if(huffmanTree[i].weight < min2){
min2 = huffmanTree[i].weight;
*s2 = i;
}
}
}
}
void calcWPL(HuffmanNode *huffmanTree, int n, int *wpl){
int i, root;
*wpl = 0;
// 找到根节点的位置
for(i=0; i<2*n-1; i++){
if(huffmanTree[i].parent == -1){
root = i;
break;
}
}
// 计算带权路径长度
for(i=0; i<n; i++){
int cur = i;
int w = 0;
while(cur != root){
if(huffmanTree[huffmanTree[cur].parent].leftChild == cur){
w++;
}
cur = huffmanTree[cur].parent;
}
*wpl += w * huffmanTree[i].weight;
}
}
```
这个算法中,首先构建哈夫曼树,然后通过遍历每一个叶子节点,计算出从该节点到根节点的路径长度,最终将所有路径长度累加起来,就是哈夫曼树的带权路径长度(WPL)。
阅读全文