shap.summary_plot(shap_values, X, plot_type="bar")什么意思
时间: 2023-06-24 09:08:00 浏览: 329
这段代码是使用 `shap` 库中的 `summary_plot` 函数来绘制 SHAP (SHapley Additive exPlanations) 值的摘要图。
`shap_values` 是一个二维数组,包含了每个样本的 SHAP 值。`X` 是原始数据集,用于为每个特征指定名称。`plot_type` 参数指定绘图类型,此处设置为 `"bar"`,表示绘制柱状图。
该函数绘制的摘要图可以帮助我们了解各个特征对预测结果的影响程度。在摘要图上,每个特征都用一个垂直条形图表示,条形图的长度表示该特征对预测结果的贡献大小,颜色表示该特征的值。如果条形图的颜色是蓝色,则表示该特征的值较小;如果颜色是红色,则表示该特征的值较大。
相关问题
explainer=shap.TreeExplainer(xgb_reg,link='logit') shap_values=explainer.shap_values(testX) y_base = explainer.expected_value print(y_base) shap_values_all=explainer.shap_values(testX) shap.summary_plot(shap_values_all,testX,plot_type="bar") shap.summary_plot(shap_values, testX, feature_names=['gonglv','nwp4','nwp3'])# 绘制SHAP shap.plots.waterfall(shap_values[:])
根据你提供的代码,似乎你使用了 SHAP(SHapley Additive exPlanations)来解释 XGBoost 模型的结果。但是,在代码中 `shap.plots.waterfall(shap_values[:])` 这一行中,你没有指定要解释的特征,这可能导致了错误。你需要将 `shap_values` 替换为你想要解释的特征的 SHAP 值数组。
此外,你虽然已经在 `explainer.shap_values(testX)` 中计算了 SHAP 值数组,但是你在接下来的代码中又调用了一次 `explainer.shap_values(testX)`,这可能导致重复计算。你可以将 `shap_values_all=explainer.shap_values(testX)` 这一行删除,因为在上一行已经计算了 SHAP 值。
最后,你可以在 `shap.summary_plot(shap_values_all,testX,plot_type="bar")` 这一行中将 `shap_values_all` 替换为 `shap_values`,因为你只需要绘制一个总结图表,而不是所有特征的 SHAP 值图表。
以下是修改后的代码:
```
explainer = shap.TreeExplainer(xgb_reg, link='logit')
shap_values = explainer.shap_values(testX)
y_base = explainer.expected_value
print(y_base)
shap.summary_plot(shap_values, testX, plot_type="bar")
shap.summary_plot(shap_values, testX, feature_names=['gonglv', 'nwp4', 'nwp3'])
shap.plots.waterfall(shap_values[0])
```
请注意,`shap.plots.waterfall(shap_values[0])` 这一行中的 `[0]` 表示你想要解释的是测试集中的第一个样本。如果你想解释其他样本,可以将 `[0]` 替换为对应的索引。
import shap##评价个体在团体中的贡献 全局解释性 explainer=shap.KernelExplainer(knn.predict,newxtrain) X_test=newxtest.sample(n=20,replace=False) knn.predict(X_test) knn.predict_proba(X_test)[:,1] shap_values =explainer.shap_values(X_test) shap.summary_plot(shap_values,X_test)
这段代码使用了SHAP库,对KNN模型进行了全局解释性分析,包括了以下几个步骤:
1. 构建模型解释器:使用KernelExplainer方法构建了一个KNN模型的解释器,其中第一个参数是KNN模型的预测函数,第二个参数是经过特征重要性排名后的训练集特征矩阵newxtrain,用于计算模型的全局特征重要性。
2. 选择测试集样本:从经过特征重要性排名后的测试集特征矩阵newxtest中随机选择了20个样本,保存在变量X_test中。
3. 预测结果:使用KNN模型对测试集样本进行了预测,并输出了预测的类别和概率。
4. 计算SHAP值:使用解释器的shap_values方法计算了选定测试集样本的SHAP值,其中第一个参数是测试集样本,第二个参数是输出的SHAP值。
5. 绘制特征重要性图:使用SHAP库中的summary_plot方法绘制了选定测试集样本的特征重要性图,其中SHAP值用颜色编码展示,颜色越深表示该特征对结果的贡献越大。
代码中的具体用法如下:
```
# 构建模型解释器
explainer = shap.KernelExplainer(knn.predict, newxtrain)
# 选择测试集样本
X_test = newxtest.sample(n=20, replace=False)
# 预测结果
print('Predictions:', knn.predict(X_test))
print('Predicted probabilities:', knn.predict_proba(X_test)[:, 1])
# 计算SHAP值
shap_values = explainer.shap_values(X_test)
# 绘制特征重要性图
shap.summary_plot(shap_values, X_test)
```
其中,newxtest是经过特征选择后的测试集特征矩阵,knn是训练好的KNN模型。在上述代码中,首先使用KernelExplainer方法构建了一个KNN模型的解释器explainer;然后从经过特征选择后的测试集特征矩阵中随机选择了20个样本,保存在变量X_test中;接着使用KNN模型对X_test进行了预测,并输出了预测的类别和概率;然后使用解释器的shap_values方法计算了X_test的SHAP值;最后使用summary_plot方法绘制了X_test的特征重要性图。
阅读全文