assert len(actions) == self.args.n_predator + 1

时间: 2024-04-03 07:36:31 浏览: 17
这是一段 Python 代码,其中使用了 assert 语句来进行断言。这个断言的意思是,判断 actions 这个列表的长度是否等于 self.args.n_predator + 1。如果不相等,就会触发 AssertionError 异常。一般来说,assert 语句用于在开发过程中进行调试和错误检查,确保程序的正确性。
相关问题

举例调用下面的方法 : class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.query_dense = tf.keras.layers.Dense(units=d_model) self.key_dense = tf.keras.layers.Dense(units=d_model) self.value_dense = tf.keras.layers.Dense(units=d_model) self.dense = tf.keras.layers.Dense(units=d_model)

假设你已经定义了一个名为 `model` 的神经网络模型,其中包含了 `MultiHeadAttention` 层,你可以使用下面的方法来调用这个层: ``` import tensorflow as tf # 定义模型 class MyModel(tf.keras.Model): def __init__(self): super(MyModel, self).__init__() self.multi_head_attention = MultiHeadAttention(d_model=64, num_heads=8) def call(self, inputs): # 调用 MultiHeadAttention 层 x = self.multi_head_attention(inputs) return x # 初始化模型 model = MyModel() # 输入数据 inputs = tf.random.normal(shape=(32, 10, 64)) # 调用模型 outputs = model(inputs) # 输出结果 print(outputs.shape) ``` 在上面的代码中,我们首先定义了一个名为 `MyModel` 的神经网络模型,并在其中实例化了一个 `MultiHeadAttention` 层。然后,我们创建了一个 `model` 对象,该对象是 `MyModel` 的实例。接着,我们使用 `tf.random.normal()` 方法生成了一个形状为 `(32, 10, 64)` 的张量作为输入数据,然后将其传递给模型的 `call()` 方法,得到了模型的输出结果。最后,我们打印出了输出结果的形状。

class MultiHeadGraphAttention(torch.nn.Module): def __init__(self, num_heads, dim_in, dim_k, dim_v): super(MultiHeadGraphAttention, self).__init__() #"dim_k and dim_v must be multiple of num_heads" assert dim_k % num_heads == 0 and dim_v % num_heads == 0 self.num_heads = num_heads self.dim_in = dim_in self.dim_k = dim_k self.dim_v = dim_v self.linear_q = torch.nn.Linear(dim_in, dim_k, bias=False) self.linear_k = torch.nn.Linear(dim_in, dim_k, bias=False) self.linear_v = torch.nn.Linear(dim_in, dim_v, bias=False) self.leaky_relu = torch.nn.LeakyReLU(negative_slope=0.2) self._nor_fact = 1 / sqrt(dim_k // num_heads)

这是一个实现多头图注意力机制的 PyTorch 模块。该模块将输入的节点特征矩阵作为 Q(查询)、K(键)和 V(值)三个线性变换的输入,并将其分别映射为 dim_k、dim_k 和 dim_v 维的特征矩阵。然后,将这些特征矩阵按照 num_heads 头进行切分,每个头的维度为 dim_k/num_heads 和 dim_v/num_heads,然后进行注意力计算。最后将每个头的结果拼接在一起,经过一次线性变换输出。其中,_nor_fact 是一个归一化因子,用于控制注意力的大小。 需要注意的是,这个模块只处理了节点之间的注意力计算,如果要考虑边上的权重信息,还需要在输入特征矩阵中加入边的特征信息,并在计算注意力时将其考虑进去。

相关推荐

import akshare as ak import numpy as np import pandas as pd import random import matplotlib.pyplot as plt class StockTradingEnv: def __init__(self): self.df = ak.stock_zh_a_daily(symbol='sh000001', adjust="qfq").iloc[::-1] self.observation_space = self.df.shape[1] self.action_space = 3 self.reset() def reset(self): self.current_step = 0 self.total_profit = 0 self.done = False self.state = self.df.iloc[self.current_step].values return self.state def step(self, action): assert self.action_space.contains(action) if action == 0: # 买入 self.buy_stock() elif action == 1: # 卖出 self.sell_stock() else: # 保持不变 pass self.current_step += 1 if self.current_step >= len(self.df) - 1: self.done = True else: self.state = self.df.iloc[self.current_step].values reward = self.get_reward() self.total_profit += reward return self.state, reward, self.done, {} def buy_stock(self): pass def sell_stock(self): pass def get_reward(self): pass class QLearningAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.epsilon = 1.0 self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.1 self.discount_factor = 0.99 self.q_table = np.zeros((self.state_size, self.action_size)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) else: return np.argmax(self.q_table[state, :]) def learn(self, state, action, reward, next_state, done): target = reward + self.discount_factor * np.max(self.q_table[next_state, :]) self.q_table[state, action] = (1 - self.learning_rate) * self.q_table[state, action] + self.learning_rate * target if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay env = StockTradingEnv() agent = QLearningAgent(env.observation_space, env.action_space) for episode in range(1000): state = env.reset() done = False while not done: action = agent.act(state) next_state, reward, done, _ = env.step(action) agent.learn(state, action, reward, next_state, done) state = next_state if episode % 10 == 0: print("Episode: %d, Total Profit: %f" % (episode, env.total_profit)) agent.save_model("model-%d.h5" % episode) def plot_profit(env, title): plt.figure(figsize=(12, 6)) plt.plot(env.df.index, env.df.close, label="Price") plt.plot(env.df.index, env.profits, label="Profits") plt.legend() plt.title(title) plt.show() env = StockTradingEnv() agent = QLearningAgent(env.observation_space, env.action_space) agent.load_model("model-100.h5") state = env.reset() done = False while not done: action = agent.act(state) next_state, reward, done, _ = env.step(action) state = next_state plot_profit(env, "QLearning Trading Strategy")优化代码

class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method这是PointnetSAModuleMSG的代码,而这是selfattention的代码:class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x);我想将SelfAttention作为PointnetSAModuleMSG的子模块,我是为了加入SA注意力机制,所以需要对PointnetSAModuleMSG进行修改。我想在每个SA模块中添加一个注意力机制,以使得网络可以更好地聚焦于重要的点。具体实现方式是在每个SA模块的最后一层MLP后加入一个Self-Attention层,(如SelfAttention类所示)用于计算每个点的注意力分数。你可以给我写出详细的修改代码吗?

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

最新推荐

recommend-type

高分项目 基于STM32F103单片机的无线测距系统源代码+项目资料齐全+教程文档.zip

【资源概览】 高分项目 基于STM32F103单片机的无线测距系统源代码+项目资料齐全+教程文档.zip高分项目 基于STM32F103单片机的无线测距系统源代码+项目资料齐全+教程文档.zip高分项目 基于STM32F103单片机的无线测距系统源代码+项目资料齐全+教程文档.zip 【资源说明】 高分项目源码:此资源是在校高分项目的完整源代码,经过导师的悉心指导与认可,答辩评审得分高达95分,项目的质量与深度有保障。 测试运行成功:所有的项目代码在上传前都经过了严格的测试,确保在功能上完全符合预期,您可以放心下载并使用。 适用人群广泛:该项目不仅适合计算机相关专业(如电子信息、物联网、通信工程、自动化等)的在校学生和老师,还可以作为毕业设计、课程设计、作业或项目初期立项的演示材料。对于希望进阶学习的小白来说,同样是一个极佳的学习资源。 代码灵活性高:如果您具备一定的编程基础,可以在此代码基础上进行个性化的修改,以实现更多功能。当然,直接用于毕业设计、课程设计或作业也是完全可行的。 欢迎下载,与我一起交流学习,共同进步!
recommend-type

java八股文介绍00002

java八股文,"Java八股文"通常指的是在面试Java开发者时经常被问到的一系列标准问题,这些问题往往是技术面试中的基础部分,用来评估应聘者对Java编程语言和Java虚拟机(JVM)的理解程度。这些问题的答案往往模式化,因此被称为“八股文”。虽然这个词汇带有一定的贬义,但是这些问题却是面试中不可或缺的一部分,因为它们能够快速地检验应聘者的基本技能和理论知识。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

如何用python编写api接口

在Python中编写API接口可以使用多种框架,其中比较流行的有Flask和Django。这里以Flask框架为例,简单介绍如何编写API接口。 1. 安装Flask框架 使用pip命令安装Flask框架: ``` pip install flask ``` 2. 编写API接口 创建一个Python文件,例如app.py,编写以下代码: ```python from flask import Flask, jsonify app = Flask(__name__) @app.route('/api/hello', methods=['GET']) def hello():
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

matlab 将加载的数据转变为矩阵

在 MATLAB 中,可以使用 `load` 函数将数据加载到工作区中,然后将其转换为矩阵。 例如,假设我们有一个名为 `data.txt` 的文本文件,其中包含以下内容: ``` 1 2 3 4 5 6 7 8 9 ``` 我们可以使用以下代码将其加载并转换为矩阵: ``` data = load('data.txt'); matrix = reshape(data, [3, 3]); ``` `load` 函数将文件中的数据加载到名为 `data` 的变量中,该变量是一个向量。我们可以使用 `reshape` 函数将其转换为一个 3x3 的矩阵。