in_ch = [embedding_dim] + num_filters是什么意思
时间: 2023-05-21 07:03:47 浏览: 142
num_filters 是指卷积层中卷积核的数量,它决定了卷积层输出的特征图的深度。在这个问题中,in_ch 表示输入的特征图的深度,即输入的通道数,而 embedding_dim 则表示每个词向量的维度。
相关问题
def __init__(self, num_entities, num_relations, embedding_dim, margin): super(TransC, self).__init__() self.entity_embeddings = nn.Embedding(num_entities, embedding_dim) self.relation_embeddings = nn.Embedding(num_relations, embedding_dim) self.projection_matrices = nn.Embedding(num_relations, embedding_dim * embedding_dim) self.margin = margin
这是一个使用Pytorch实现的TransC模型的初始化函数。TransC是一种基于知识图谱的实体关系抽取模型,它的核心思想是利用嵌入空间中的投影来描述实体和关系之间的关系。具体来说,它通过将实体和关系投影到不同的空间中,从而使得实体和关系的嵌入向量能够在同一空间中进行计算,从而更好的描述它们之间的关系。在这个初始化函数中,我们定义了三个嵌入层,分别用于嵌入实体、关系和投影矩阵。其中,num_entities表示实体的数量,num_relations表示关系的数量,embedding_dim表示嵌入向量的维度,margin表示用于计算损失函数的边界值。这个函数的作用是初始化模型的各个参数。
把这段代码里的location_embedding_dim去掉class my_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(my_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads location_embedding_dim = 0 self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
这段代码里的location_embedding_dim是一个参数,它表示位置嵌入的维度。如果你想去掉它,可以把它的值设为0,然后在构造函数中把self.location_embedding_dim也设为0即可。具体来说,修改后的代码如下:
```
class my_GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels, n_heads, filters_1, filters_2, dropout):
super(my_GAT, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.n_heads = n_heads
self.filters_1 = filters_1
self.filters_2 = filters_2
self.dropout = dropout
self.location_embedding_dim = 0
self.setup_layers()
def setup_layers(self):
self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1)
self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False)
def forward(self, edge_indices, features, location_embedding):
features = self.GAT_1(features, edge_indices)
features = torch.nn.functional.relu(features)
features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training)
features = self.GAT_2(features, edge_indices)
return features
```
阅读全文