def train_selected_model(): # global model_var # selected_model = model_var.get() # if selected_model == "线性回归": # train_linear_regression() # elif selected_model == "决策树": # train_decision_tree() # elif selected_model == "随机森林": # train_random_forest() 解释每一句代码含义

时间: 2024-04-27 16:24:15 浏览: 11
这段代码定义了一个名为`train_selected_model()`的函数,其功能是根据用户选择的模型类型训练相应的模型。具体来说: - `global model_var`:声明`model_var`为全局变量。 - `selected_model = model_var.get()`:获取用户选择的模型类型,并将其赋值给变量`selected_model`。 - `if selected_model == "线性回归":`:如果用户选择的模型类型为线性回归,则执行下一行代码。 - `train_linear_regression()`:调用`train_linear_regression()`函数,训练线性回归模型。 - `elif selected_model == "决策树":`:如果用户选择的模型类型为决策树,则执行下一行代码。 - `train_decision_tree()`:调用`train_decision_tree()`函数,训练决策树模型。 - `elif selected_model == "随机森林":`:如果用户选择的模型类型为随机森林,则执行下一行代码。 - `train_random_forest()`:调用`train_random_forest()`函数,训练随机森林模型。
相关问题

为下面的每句代码加注释:def train_model(self, model, epochs, train_generator, steps_per_epoch, validation_generator, validation_steps, model_url, is_load_model=False): # 载入模型 if is_load_model and os.path.exists(model_url): model = load_model(model_url) history_ft = model.fit( train_generator, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=validation_generator, validation_steps=validation_steps) # 模型保存 model.save(model_url, overwrite=True) return history_ft

``` def train_model(self, model, epochs, train_generator, steps_per_epoch, validation_generator, validation_steps, model_url, is_load_model=False): ``` 这个函数是用来训练深度学习模型的,接收的参数有: - `model`: 所使用的模型 - `epochs`: 训练的轮数 - `train_generator`: 训练数据的生成器 - `steps_per_epoch`: 每轮训练的步数 - `validation_generator`: 验证数据的生成器 - `validation_steps`: 每轮验证的步数 - `model_url`: 保存模型的路径 - `is_load_model`: 表示是否需要从保存的模型中加载,默认为`False` ``` if is_load_model and os.path.exists(model_url): model = load_model(model_url) ``` 如果`is_load_model`为`True`并且保存模型的路径存在,则从保存的模型中加载模型。 ``` history_ft = model.fit( train_generator, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=validation_generator, validation_steps=validation_steps) ``` 使用`model.fit`方法训练模型,其中: - `train_generator`是训练数据的生成器 - `steps_per_epoch`是每轮训练的步数 - `epochs`是训练的轮数 - `validation_data`是验证数据的生成器 - `validation_steps`是每轮验证的步数 训练历史记录在`history_ft`中。 ``` model.save(model_url, overwrite=True) ``` 保存训练好的模型到指定路径,如果路径存在则覆盖。 ``` return history_ft ``` 返回训练历史。

def train_random_forest(): # global df, train_ratio # x_train, x_test, y_train, y_test = train_test_split(df.iloc[:, :-1], df.iloc[:, -1], train_size=train_ratio) # model = RandomForestRegressor() # model.fit(x_train, y_train) # score = model.score(x_test, y_test) # text_output.insert(tk.END, "随机森林模型测试评分:{:.2f}\n".format(score))解释每一句代码含义

这段代码定义了一个名为`train_random_forest()`的函数,其功能是训练一个随机森林模型并返回测试评分。具体来说: - `global df, train_ratio`:声明`df`和`train_ratio`为全局变量。 - `x_train, x_test, y_train, y_test = train_test_split(df.iloc[:, :-1], df.iloc[:, -1], train_size=train_ratio)`:使用`train_test_split`函数将数据集`df`划分为训练集和测试集,其中训练集占比为`train_ratio`,并将划分后的特征和标签分别赋值给`x_train, x_test, y_train, y_test`四个变量。 - `model = RandomForestRegressor()`:创建一个随机森林回归模型对象`model`。 - `model.fit(x_train, y_train)`:使用训练集`x_train, y_train`来训练模型。 - `score = model.score(x_test, y_test)`:使用测试集`x_test, y_test`来对模型进行评分,评分结果赋值给变量`score`。 - `text_output.insert(tk.END, "随机森林模型测试评分:{:.2f}\n".format(score))`:将测试评分结果添加到文本框`text_output`中,其中`{:.2f}`表示将评分结果保留两位小数,`\n`表示换行符。

相关推荐

import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train tf.compat.v1.reset_default_graph() EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: #定义输入与输出的格式 x = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} #直接调用封装好的函数来计算前向传播的结果 y = mnist_inference.inference(x, None) #计算正确率 correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32)) #通过变量重命名的方式加载模型 variable_averages = tf.train.ExponentialMovingAverage(0.99) variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variable_to_restore) #每隔10秒调用一次计算正确率的过程以检测训练过程中正确率的变化 while True: with tf.compat.v1.Session() as sess: ckpt = tf.train.get_checkpoint_state(minist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #load the model saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets(r"D:\Anaconda123\Lib\site-packages\tensorboard\mnist", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.compat.v1.app.run()对代码进行改进

import numpy as np from tensorflow import keras # 加载手写数字图像和标签 def load_data(): train_data = np.loadtxt('train_images.csv', delimiter=',') train_labels = np.loadtxt('train_labels.csv', delimiter=',') test_data = np.loadtxt('test_image.csv', delimiter=',') return train_data, train_labels, test_data # 数据预处理 def preprocess_data(train_data, test_data): # 归一化到 [0, 1] 范围 train_data = train_data / 255.0 test_data = test_data / 255.0 # 将数据 reshape 成适合 CNN 的输入形状 (样本数, 高度, 宽度, 通道数) train_data = train_data.reshape(-1, 28, 28, 1) test_data = test_data.reshape(-1, 28, 28, 1) return train_data, test_data # 构建 CNN 模型 def build_model(): model = keras.Sequential([ keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Flatten(), keras.layers.Dense(units=128, activation='relu'), keras.layers.Dense(units=10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model # 进行数字识别 def recognize_digit(image, model): probabilities = model.predict(image) digit = np.argmax(probabilities) return digit # 主函数 def main(): # 加载数据 train_data, train_labels, test_data = load_data() # 数据预处理 train_data, test_data = preprocess_data(train_data, test_data) # 构建并训练模型 model = build_model() model.fit(train_data, train_labels, epochs=10, batch_size=32) # 进行数字识别 recognized_digit = recognize_digit(test_data, model) print("识别结果:", recognized_digit) if __name__ == '__main__': main()

from django.contrib import admin from django.urls import reverse from django.utils.html import format_html from django.shortcuts import redirect from .models import Drug @admin.register(Drug) class DrugAdmin(admin.ModelAdmin): change_list_template = 'admin/drug/change_list.html' def get_urls(self): urls = super().get_urls() custom_urls = [ path('import-csv/', self.import_csv), ] return custom_urls + urls def import_csv(self, request): if request.method == 'POST': # TODO: import CSV data self.message_user(request, 'CSV data imported successfully') return redirect('..') return render(request, 'admin/drug/import_csv.html') def changelist_view(self, request, extra_context=None): if not request.GET.get('ordering'): # set default ordering request.GET = request.GET.copy() request.GET['ordering'] = 'name' return super().changelist_view(request, extra_context=extra_context) def interaction_display(self, obj): return format_html('{}', obj.interaction) interaction_display.short_description = 'Interaction' def get_actions(self, request): actions = super().get_actions(request) del actions['delete_selected'] return actions def delete_model(self, request, obj): # TODO: delete model pass def delete_selected(self, request, queryset): # TODO: delete selected models pass def get_queryset(self, request): qs = super().get_queryset(request) qs = qs.order_by('name') return qs def add_view(self, request, form_url='', extra_context=None): self.change_list_template = None return super().add_view(request, form_url=form_url, extra_context=extra_context) def change_view(self, request, object_id, form_url='', extra_context=None): self.change_list_template = None return super().change_view(request, object_id, form_url=form_url, extra_context=extra_context) def delete_view(self, request, object_id, extra_context=None): self.change_list_template = None return super().delete_view(request, object_id, extra_context=extra_context) 怎么重写ModelAdmin中的特性

最新推荐

recommend-type

vb仓库管理系统(可执行程序+源码+ 开题报告+ 答辩稿)【VB】.zip

vb仓库管理系统(可执行程序+源码+ 开题报告+ 答辩稿)【VB】
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述
recommend-type

ic验证工作中如何在平台中加入发数的总数?

在进行IC验证工作时,可以通过以下步骤在平台中加入发数的总数: 1. 打开IC验证工具(如Cadence Virtuoso)并打开对应的设计文件。 2. 在设计文件中选择需要计算发数的部分电路或模块。 3. 在IC验证工具中打开时序分析工具(如Cadence Tempus)。 4. 在时序分析工具中设置好时钟频率、时钟周期等参数。 5. 执行时序分析,生成时序报告。 6. 在时序报告中查找发数统计信息,将其记录下来。 7. 将发数统计信息添加到平台中,以便在之后的仿真或验证中使用。 需要注意的是,发数统计信息可能因为设计文件的不同而有所差异,需要根据实际情况进行调整和计算。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。