NameError: name 'train_test_split' is not defined
时间: 2023-07-20 16:26:00 浏览: 199
非常抱歉,这是因为在示例代码中没有导入`train_test_split`函数。你可以通过以下代码导入它:
```python
from sklearn.model_selection import train_test_split
```
将其放在代码的开头,例如:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split # 导入 train_test_split 函数
# 加载MNIST数据集
mnist = datasets.load_digits()
# 准备数据
X = mnist.data
y = mnist.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 创建一个SVM分类器
svm_clf = Pipeline([
("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge", random_state=42))
])
# 训练SVM分类器
svm_clf.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = svm_clf.predict(X_test)
# 计算准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
# 绘制一些样本图像和它们的预测结果
fig, axes = plt.subplots(4, 4, figsize=(8, 8))
for i, ax in enumerate(axes.flat):
ax.imshow(X_test[i].reshape(8, 8), cmap="binary")
ax.set(title=f"Predicted: {y_pred[i]}")
ax.axis('off')
plt.show()
```
希望这对你有所帮助!
阅读全文
相关推荐


















