使用以下代码 :# 导入随机森林模型 from sklearn.ensemble import RandomForestClassifier # 将数据集分为训练集和测试集 from sklearn.model_selection import train_test_split train, test = train_test_split(data, test_size=0.3, random_state=0) # 创建随机森林模型 rfc = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0) # 使用训练集对模型进行训练 rfc.fit(train.drop(['id', 'yearin'], axis=1), train['stroke_or_cvd']) # 对测试集进行预测并评估模型的准确性 from sklearn.metrics import accuracy_score pred = rfc.predict(test.drop(['id', 'yearin'], axis=1)) accuracy_score(test['stroke_or_cvd'], pred) 出现以下问题:NameError: name 'data' is not defined如何解决?
时间: 2024-03-03 22:48:23 浏览: 136
该错误提示表明在代码中使用了未定义的变量 `data`。需要先定义变量 `data` 并将数据读入到该变量中,然后再进行后续的操作。例如,可以使用 pandas 库读取 csv 格式的数据文件:
```
import pandas as pd
# 读取数据文件
data = pd.read_csv('data.csv')
# 将数据集分为训练集和测试集
from sklearn.model_selection import train_test_split
train, test = train_test_split(data, test_size=0.3, random_state=0)
# 创建随机森林模型
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0)
# 使用训练集对模型进行训练
rfc.fit(train.drop(['id', 'yearin'], axis=1), train['stroke_or_cvd'])
# 对测试集进行预测并评估模型的准确性
from sklearn.metrics import accuracy_score
pred = rfc.predict(test.drop(['id', 'yearin'], axis=1))
accuracy_score(test['stroke_or_cvd'], pred)
```
需要注意的是,`data.csv` 文件路径需要根据实际情况进行修改。
阅读全文